Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

Development, fabrication and characterization of textured substrates for stretchable electronics

Télécharger
Jeunehomme, Thomas ULiège
Promoteur(s) : Redouté, Jean-Michel ULiège
Date de soutenance : 30-jui-2025/1-jui-2025 • URL permanente : http://hdl.handle.net/2268.2/23332
Détails
Titre : Development, fabrication and characterization of textured substrates for stretchable electronics
Titre traduit : [fr] Développement, fabrication et caractérisation de substrats texturés pour l’électronique extensible.
Auteur : Jeunehomme, Thomas ULiège
Date de soutenance  : 30-jui-2025/1-jui-2025
Promoteur(s) : Redouté, Jean-Michel ULiège
Membre(s) du jury : Gilet, Tristan ULiège
Gommes, Cédric ULiège
Langue : Anglais
Nombre de pages : 146
Mots-clés : [en] Stretchable Electronics 3D printing Roughness
Discipline(s) : Ingénierie, informatique & technologie > Ingénierie mécanique
Organisme(s) subsidiant(s) : Université de Liège
Centre(s) de recherche : Laboratoire Microsys
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil biomédical, à finalité spécialisée
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] Stretchable electronics technologies have recently garnered increasing interest by enabling
the fabrication of electronic devices compatible with applications in fields such as wearable
technology and healthcare. In particular, this area has underscored the significance of surface
roughness which, when properly engineered, can lead to highly promising results.
This thesis aimed to develop, fabricate, and characterize textured substrates for stretchable
electronics. Using tensile samples in PDMS cured in 3D-printed molds and covered with gold, the
focus was on generating various 2D out-of-plane roughness profiles to isolate and quantify the
impact of the three roughness parameters defined by the H-H correlation method on specimen
electrical behavior. The study began with a commercial LED-LCD printer and progressed to the
characterization and use of a custom printer to produce molds with more detailed and accurate
surface features.
The results highlighted key trends, starting with the stabilizing effect of surface roughness
which reduces resistance variation under tensile strain compared to flat samples. The RMS
roughness and correlation length of the surface profile showed opposite effects combined
through the ratio correlation length/RMS roughness : lower ratios correlate with lower resistance variation under tensile deformations. A non-linear influence of the RMS roughness was however suggested by the results. In addition, high surface fractality led to a real plateau of stable electrical properties during tensile tests while staircase-like profiles promoted overall stabilization and increased critical strain.
During custom printer’s characterization, interesting results were also obtained with the smaller the desired feature in the XY plane, the higher the required UV light intensity for a complete
polymerization but also the more challenging it becomes to achieve a significant height without
compromising lateral resolution. Nanometric surface roughness was attainable by increasing UV
intensity, exposure time, and introducing pixel movement during printing.


Fichier(s)

Document(s)

File
Access TFE_JEUNEHOMME_Thomas.pdf
Description:
Taille: 33.24 MB
Format: Adobe PDF

Annexe(s)

File
Access Summary_TFE__JEUNEHOMME_Thomas.pdf
Description:
Taille: 674.2 kB
Format: Adobe PDF
File
Access Illustrations_TFE_JEUNEHOMME_Thomas.pdf
Description:
Taille: 699.33 kB
Format: Adobe PDF

Auteur

  • Jeunehomme, Thomas ULiège Université de Liège > Master ing. civ. biom. fin. spéc.

Promoteur(s)

Membre(s) du jury









Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.