Biofilm Driven Electrode Optimization in Bioelectrochemical Systems
Babu, Sandra
Promoteur(s) :
Richel, Aurore
Date de soutenance : 25-jui-2025 • URL permanente : http://hdl.handle.net/2268.2/23344
Détails
| Titre : | Biofilm Driven Electrode Optimization in Bioelectrochemical Systems |
| Titre traduit : | [fr] Selection d’électrodes optimisées pour améliorer les biofilms dans les systèmes bioélectrochimiques |
| Auteur : | Babu, Sandra
|
| Date de soutenance : | 25-jui-2025 |
| Promoteur(s) : | Richel, Aurore
|
| Membre(s) du jury : | Karpichev, Yevgen
Baumberger, Stéphanie Mendoza Franzese, Daniela |
| Langue : | Anglais |
| Nombre de pages : | 54 |
| Mots-clés : | [en] Bioelectrochemical systems [en] ammonia production [en] biofilm [en] chronoamperometry [en] carbon electrodes [en] sustainable bioengineering |
| Discipline(s) : | Ingénierie, informatique & technologie > Ingénierie chimique Sciences du vivant > Biotechnologie |
| Institution(s) : | Université de Liège, Liège, Belgique Centeon, Paris, France |
| Diplôme : | Master en bioingénieur : chimie et bioindustries, à finalité spécialisée |
| Faculté : | Mémoires de la Gembloux Agro-Bio Tech (GxABT) |
Résumé
[en] The transition toward sustainable ammonia synthesis is critical in reducing the environmental footprint of the fertilizer industry, traditionally dominated by the energy-intensive Haber-Bosch process. Bioelectrochemical systems (BES) offer a promising green alternative by leveraging electroactive microorganisms for ammonia production via bioelectrochemical nitrogen fixation (e-BNF). A central challenge in BES performance lies in optimizing the biofilm–electrode interface, where microbial activity and electron transfer converge.
This thesis investigates the interplay between carbon-based electrode materials and electroactive biofilm development using a proprietary strain (Centeobacter sp. CTN001) under controlled anaerobic conditions. Chronoamperometry and cyclic voltammetry were employed to evaluate electrochemical activity, while protein content, dry biomass, and CFU counts were quantified to assess biofilm maturity. Surface treatment (e.g., acid activation) and functionalization strategies (e.g., carbon-black inks and alginate composites) were applied to enhance electrode biocompatibility and conductivity.
Findings reveal that surface morphology and chemical modification significantly influence early biofilm formation and long-term current generation. Among the tested materials, carbon felt exhibited the highest current density, while ELAT carbon cloth showed comparable performance with superior handling properties and greater suitability for further functionalization. These results contribute valuable insight into material-biological interactions and inform the rational design of BES anodes for decentralized, sustainable ammonia production.
Fichier(s)
Document(s)
S2400565_Sandra Babu_Master thesis_BIOCEB_ULiege version.pdf
Description:
Taille: 2.67 MB
Format: Adobe PDF
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.

Master Thesis Online

