Feedback

Gembloux Agro-Bio Tech (GxABT)
Gembloux Agro-Bio Tech (GxABT)
MASTER THESIS

Biofilm Driven Electrode Optimization in Bioelectrochemical Systems

Download
Babu, Sandra ULiège
Promotor(s) : Richel, Aurore ULiège
Date of defense : 25-Jun-2025 • Permalink : http://hdl.handle.net/2268.2/23344
Details
Title : Biofilm Driven Electrode Optimization in Bioelectrochemical Systems
Translated title : [fr] Selection d’électrodes optimisées pour améliorer les biofilms dans les systèmes bioélectrochimiques
Author : Babu, Sandra ULiège
Date of defense  : 25-Jun-2025
Advisor(s) : Richel, Aurore ULiège
Committee's member(s) : Karpichev, Yevgen 
Baumberger, Stéphanie 
Mendoza Franzese, Daniela 
Language : English
Number of pages : 54
Keywords : [en] Bioelectrochemical systems
[en] ammonia production
[en] biofilm
[en] chronoamperometry
[en] carbon electrodes
[en] sustainable bioengineering
Discipline(s) : Engineering, computing & technology > Chemical engineering
Life sciences > Biotechnology
Institution(s) : Université de Liège, Liège, Belgique
Centeon, Paris, France
Degree: Master en bioingénieur : chimie et bioindustries, à finalité spécialisée
Faculty: Master thesis of the Gembloux Agro-Bio Tech (GxABT)

Abstract

[en] The transition toward sustainable ammonia synthesis is critical in reducing the environmental footprint of the fertilizer industry, traditionally dominated by the energy-intensive Haber-Bosch process. Bioelectrochemical systems (BES) offer a promising green alternative by leveraging electroactive microorganisms for ammonia production via bioelectrochemical nitrogen fixation (e-BNF). A central challenge in BES performance lies in optimizing the biofilm–electrode interface, where microbial activity and electron transfer converge.
This thesis investigates the interplay between carbon-based electrode materials and electroactive biofilm development using a proprietary strain (Centeobacter sp. CTN001) under controlled anaerobic conditions. Chronoamperometry and cyclic voltammetry were employed to evaluate electrochemical activity, while protein content, dry biomass, and CFU counts were quantified to assess biofilm maturity. Surface treatment (e.g., acid activation) and functionalization strategies (e.g., carbon-black inks and alginate composites) were applied to enhance electrode biocompatibility and conductivity.
Findings reveal that surface morphology and chemical modification significantly influence early biofilm formation and long-term current generation. Among the tested materials, carbon felt exhibited the highest current density, while ELAT carbon cloth showed comparable performance with superior handling properties and greater suitability for further functionalization. These results contribute valuable insight into material-biological interactions and inform the rational design of BES anodes for decentralized, sustainable ammonia production.


File(s)

Document(s)

File
Access S2400565_Sandra Babu_Master thesis_BIOCEB_ULiege version.pdf
Description:
Size: 2.67 MB
Format: Adobe PDF

Author

  • Babu, Sandra ULiège Université de Liège > Gembloux Agro-Bio Tech

Promotor(s)

Committee's member(s)

  • Karpichev, Yevgen Tallinn University of Technology > Chemistry and Biotechnology
  • Baumberger, Stéphanie AgroParisTech > Agrosciences > Professor
  • Mendoza Franzese, Daniela Centeon > Research and Development








All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.