Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

Autonomous Drone Control: A Reinforcement Learning Approach

Télécharger
Hansen, Julien ULiège
Promoteur(s) : Ernst, Damien ULiège
Date de soutenance : 30-jui-2025/1-jui-2025 • URL permanente : http://hdl.handle.net/2268.2/23358
Détails
Titre : Autonomous Drone Control: A Reinforcement Learning Approach
Titre traduit : [fr] Contrôle autonome de drones : Une approche par apprentissage par renforcement
Auteur : Hansen, Julien ULiège
Date de soutenance  : 30-jui-2025/1-jui-2025
Promoteur(s) : Ernst, Damien ULiège
Membre(s) du jury : Geurts, Pierre ULiège
Leroy, Pascal ULiège
Langue : Anglais
Nombre de pages : 47
Mots-clés : [en] Reinforcement Learning
[en] Drone
[fr] IsaacLab
[fr] policy gradient method
[fr] QuadCopter
Discipline(s) : Ingénierie, informatique & technologie > Sciences informatiques
Public cible : Chercheurs
Professionnels du domaine
Etudiants
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[fr] Drones have become an essential tools across a wide range of industries, from agri-
culture to surveillance, and are increasingly deployed in military contexts for detection,
recognition, identification, exploration, and combat purposes. While most systems remain
controlled by human, the shift toward autonomy is intensifying, driven by breakthroughs
in artificial intelligence, notably in reinforcement learning and scalable simulation tech-
niques.
This Master’s thesis explores the potential of reinforcement learning for drone control
within both single-agent and multi-agent frameworks. Two tasks are addressed : naviga-
tion in unknown terrains and adversarial drone combat. Our work focuses on designing
simulation environments that model the learning process of agents as they interact with
these tasks. Our navigation environment consists of multiple randomly spaced obstacles
(spikes), a target, and a drone placed on opposite sides of the terrain. The drone is equip-
ped with a sensor—either a LiDAR or a camera—which it uses to explore the environment
and reach the target. In the adversarial scenario, the environment includes two drones :
an attacker and a defender. The attacker attempts to reach a designated target, while the
defender tries to intercept it by colliding with it.
Reinforcement learning is particularly well suited to these tasks due to its ability to
learn complex, sequential decision-making policies from interaction with the environment.
In scenarios such as drone navigation or combat, where the environment is often partially
observable, highly dynamic, and difficult to model analytically, RL offers a flexible and
data-driven approach to learning effective control strategies. Furthermore, Reinforcement
learning naturally supports learning in multi-agent settings, where agents must coordinate
or compete in real time.
To tackle these tasks, policy gradient methods such as Proximal Policy Optimization
, its multi-agent extension Independent Proximal Policy Optimization and a variant ins-
pired by self-play methods were explored. To train and evaluate our agents, IsaacLab
environments were designed following the formalism of partially observable Markov deci-
sion process and stochastic games. Our work highlights the performance of trained agents
regarding these tasks and show promising potential for future improvements regarding
autonomous drone control


Fichier(s)

Document(s)

File
Access TFE_HANSEN_Julien.pdf
Description:
Taille: 8.73 MB
Format: Adobe PDF

Annexe(s)

File
Access TFE_Julien_Resume.pdf
Description:
Taille: 238.11 kB
Format: Adobe PDF

Auteur

  • Hansen, Julien ULiège Université de Liège > Master ing. civ. inf. fin. spéc.int. sys.

Promoteur(s)

Membre(s) du jury

  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi Voir ses publications sur ORBi
  • Leroy, Pascal ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
    ORBi Voir ses publications sur ORBi








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.