Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS

Rapid Cytomine: foundation models for interactive annotation in computational pathology

Download
Vanmechelen, Thibaud ULiège
Promotor(s) : Geurts, Pierre ULiège ; Marée, Raphaël ULiège
Date of defense : 30-Jun-2025/1-Jul-2025 • Permalink : http://hdl.handle.net/2268.2/23364
Details
Title : Rapid Cytomine: foundation models for interactive annotation in computational pathology
Translated title : [fr] Cytomine Rapide : modèles fondamentaux pour l'annotation interactive en pathologie computationnelle
Author : Vanmechelen, Thibaud ULiège
Date of defense  : 30-Jun-2025/1-Jul-2025
Advisor(s) : Geurts, Pierre ULiège
Marée, Raphaël ULiège
Committee's member(s) : Phillips, Christophe ULiège
Huynh-Thu, Vân Anh ULiège
Language : English
Number of pages : 125
Keywords : [en] Deep Learning
[en] histopathology
[en] segmentation
[en] Segment Anything
Discipline(s) : Engineering, computing & technology > Computer science
Target public : Researchers
Professionals of domain
Student
Complementary URL : https://github.com/ThibaudVanmechelen/HistoSAM
https://github.com/ThibaudVanmechelen/Cytomine-core
https://github.com/ThibaudVanmechelen/Cytomine-sam
https://github.com/ThibaudVanmechelen/bigpicture-cytomine-nginx
https://github.com/ThibaudVanmechelen/Cytomine-community-edition
https://github.com/ThibaudVanmechelen/Cytomine-web-ui
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] This thesis presents the integration of an interactive segmentation tool into the Cytomine platform, based on the Segment Anything Models (SAM and SAM2) published by Meta, in order to simplify the manual annotation process. Cytomine is a collaborative application which is designed for sharing and annotating large biomedical images (with a particular interest for histopathology). It allows users to interact with the large-scale images from digital pathology scanners or other sources, and to annotate as well as analyze them collaboratively. Collecting high-quality annotations in such specialized domains is a significant challenge, as it often requires the involvement of experts (such as researchers or medical professionals), whose time is limited and valuable. Therefore, providing an efficient segmentation tool is extremely important.

To address this challenge, both SAM and SAM2 were first evaluated and compared in a zero-shot setting. A series of fine-tuning experiments under various training configurations were then conducted to assess the performance sensitivity to different parameters, and to eventually identify the best-performing setting. Several post-processing strategies were also explored to enhance the mask quality and usability, and the possible advantages of integrating domain-specific encoders alongside SAM were also investigated.

The best-performing model was integrated into the latest release of Cytomine through new API endpoints as well as a new back-end server. To support future development, a tutorial was also created to guide users and developers through the process of modifying Cytomine to integrate custom API endpoints.


File(s)

Document(s)

File
Access MasterThesisTVM.pdf
Description:
Size: 51.33 MB
Format: Adobe PDF

Annexe(s)

File
Access refinement_module.png
Description:
Size: 242.79 kB
Format: image/png
File
Access architecture_4.png
Description:
Size: 454.65 kB
Format: image/png
File
Access architecture_3.png
Description:
Size: 454.11 kB
Format: image/png
File
Access architecture_2.png
Description:
Size: 394.01 kB
Format: image/png
File
Access architecture_1.png
Description:
Size: 343.79 kB
Format: image/png
File
Access automatic_segmentation.png
Description:
Size: 576.95 kB
Format: image/png
File
Access mask_generation.png
Description:
Size: 192.03 kB
Format: image/png
File
Access segmentation_example.png
Description:
Size: 1.07 MB
Format: image/png
File
Access resume.pdf
Description:
Size: 60.03 kB
Format: Adobe PDF

Author

  • Vanmechelen, Thibaud ULiège Université de Liège > Master ing. civ. inf. fin. spéc.int. sys.

Promotor(s)

Committee's member(s)

  • Phillips, Christophe ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Dép. d'électric., électron. et informat. (Inst.Montefiore)
    ORBi View his publications on ORBi
  • Huynh-Thu, Vân Anh ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Informatique
    ORBi View his publications on ORBi








All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.