Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

Client Order Forecasting in a Semi-Digital Meal Delivery System Using Machine Learning

Télécharger
Robyns, Dorian ULiège
Promoteur(s) : Louppe, Gilles ULiège
Date de soutenance : 30-jui-2025/1-jui-2025 • URL permanente : http://hdl.handle.net/2268.2/23372
Détails
Titre : Client Order Forecasting in a Semi-Digital Meal Delivery System Using Machine Learning
Titre traduit : [fr] Prévision des Commandes Client dans un Système de Livraison de Repas Semi-Digitalisé à l’Aide de l’Apprentissage Automatique
Auteur : Robyns, Dorian ULiège
Date de soutenance  : 30-jui-2025/1-jui-2025
Promoteur(s) : Louppe, Gilles ULiège
Membre(s) du jury : Wehenkel, Louis ULiège
Marée, Raphaël ULiège
Langue : Anglais
Nombre de pages : 73
Mots-clés : [en] forecasting
[en] artificial intelligence
[en] data analysis
[en] orders
[en] dishes
[en] time series
[en] meal delivery
[en] supervised learning
[en] customer behavior
[en] prediction
[en] alice traiteur
[en] nubios
[en] machine learning
[en] deep learning
Discipline(s) : Ingénierie, informatique & technologie > Sciences informatiques
Organisme(s) subsidiant(s) : Nubios (host organization)
Intitulé du projet de recherche : Client Order Forecasting in a Semi-Digital Meal Delivery System Using Machine Learning
Public cible : Grand public
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en sciences informatiques, à finalité spécialisée en "intelligent systems"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] This master’s thesis was conducted during an internship at Nubios on behalf of Alice Traiteur, a company
based in Liège that delivers daily meals to households. The main goal of the project was to design a
forecasting system capable of predicting what each client is likely to order and when, based on historical
data, and to integrate it in an already existing application. The solution aimed to improve operational
planning, reduce manual errors, and improve customer satisfaction.
Over one million historical orders were analyzed. An Exploratory Data Analysis (EDA) provided insights
into customer behavior, ordering frequency, dish combinations, and time gaps between orders. The fore-
casting problem was approached using supervised learning, with a focus on time-aware validation. Multiple
models were tested, including Random Forest, XGBoost, neural networks (MLP, RNN), and Transformers
(TFT). Among these, the customer-based Random Forest model achieved the best overall performance.
The system was designed to be non-intrusive. Predictions are delivered through a dedicated dash-
board separate from the main application. Several features were implemented: future order forecasts,
forgotten order detection, revenue predictions, and client-specific follow-up alerts. The machine learning
pipeline, deployed on Amazon SageMaker, automatically retrains the models monthly and stores results in
a dedicated back-end.
Feedback from the client was very positive. The system provided accurate forecasts of daily orders
and expected sales. The predictions closely matched real-world values. One suggested improvement was
the addition of an automatic carry-over feature for recurring orders. Overall, the project demonstrated
the real-world value of AI in supporting data-driven decisions without disrupting existing workflows.


Fichier(s)

Document(s)

File
Access Thesis_order_forecasting.pdf
Description:
Taille: 3.36 MB
Format: Adobe PDF
File
Access Thesis_summary_order_forecasting.pdf
Description: Summary of the master thesis
Taille: 130.27 kB
Format: Adobe PDF

Annexe(s)

File
Access lego_db_diagram.png
Description: Can be found in the thesis (appendix A.1), but more readable here
Taille: 562.57 kB
Format: image/png

Auteur

  • Robyns, Dorian ULiège Université de Liège > Master sc. inform. fin. spéc. intell. syst.

Promoteur(s)

Membre(s) du jury

  • Wehenkel, Louis ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi Voir ses publications sur ORBi
  • Marée, Raphaël ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi Voir ses publications sur ORBi








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.