Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS

Automated Generation of Impactful Text Formatting Using Large Language Models

Download
La Rocca, Lionel ULiège
Promotor(s) : Louppe, Gilles ULiège
Date of defense : 30-Jun-2025/1-Jul-2025 • Permalink : http://hdl.handle.net/2268.2/23373
Details
Title : Automated Generation of Impactful Text Formatting Using Large Language Models
Translated title : [fr] Génération automatisée de mise en forme impactante de textes à l'aide de grands modèles de langage
Author : La Rocca, Lionel ULiège
Date of defense  : 30-Jun-2025/1-Jul-2025
Advisor(s) : Louppe, Gilles ULiège
Committee's member(s) : Mahiat, Nicolas 
Wehenkel, Louis ULiège
Boigelot, Bernard ULiège
Language : English
Discipline(s) : Engineering, computing & technology > Computer science
Complementary URL : https://bitbucket.org/nmahiat/zeiko-ai/src/dev/
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences informatiques, à finalité spécialisée en "management"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] This master's thesis aims to develop an automated system for generating structured and visually impactful content for Zeiko, a Belgian start-up that offers a software for interactive document creation. The project addresses the need for a solution that helps Zeiko’s users transform long and unstructured textual content into concise, structured, and visually engaging formats compatible with Zeiko's software.

The proposed solution uses large language models to analyze and summarize input text while preserving coherence and key elements. A central component of the system is a fine-tuned Mistral 7B model, trained specifically for structured JSON generation. This model extracts key information such as titles, summaries, and highlights from unstructured text, and returns a structured JSON designed for infographic templates.

The fine-tuning process was managed using custom datasets and its effectiveness was validated through evaluations. The generated outputs are mapped into predefined infographic templates known as z-blocks, a format specific to the company. Additionally, a complementary management platform was developed to allow Zeiko’s design team to deploy new templates with associated metadata.

The entire solution is deployed on Google Cloud using Docker and Kubernetes to ensure scalability and reliability. Evaluations demonstrate that the system significantly improves the speed and consistency of content creation. It also confirms that fine-tuning models like Mistral 7B is an effective method for extracting and structuring information from raw text, providing a practical tool to simplify document production.


File(s)

Document(s)

File
Access summary.pdf
Description:
Size: 35.68 kB
Format: Adobe PDF
File
Access Masterthesis.pdf
Description:
Size: 8.15 MB
Format: Adobe PDF

Author

  • La Rocca, Lionel ULiège Université de Liège > Master sc. inform. fin. spéc. manag.

Promotor(s)

Committee's member(s)

  • Mahiat, Nicolas
  • Wehenkel, Louis ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi View his publications on ORBi
  • Boigelot, Bernard ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Informatique
    ORBi View his publications on ORBi








All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.