Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

A Neuromorphic Approach to Slip Detection with 3D Magnetic Sensors

Télécharger
Hala, Pierre ULiège
Promoteur(s) : Franci, Alessio ULiège ; Vanderbemden, Philippe ULiège
Date de soutenance : 8-sep-2025/9-sep-2025 • URL permanente : http://hdl.handle.net/2268.2/24761
Détails
Titre : A Neuromorphic Approach to Slip Detection with 3D Magnetic Sensors
Titre traduit : [fr] Approche neuromorphique pour la détection du glissement à l’aide de capteurs magnétiques 3D
Auteur : Hala, Pierre ULiège
Date de soutenance  : 8-sep-2025/9-sep-2025
Promoteur(s) : Franci, Alessio ULiège
Vanderbemden, Philippe ULiège
Membre(s) du jury : Drion, Guillaume ULiège
Sacré, Pierre ULiège
Le Signor, Théo 
Langue : Anglais
Nombre de pages : 123
Mots-clés : [en] Robotic tactile sensing
[en] slip detection
[en] asynchronous
[en] driven
[en] event-driven
[en] real-time
[en] magnetic sensors
Discipline(s) : Ingénierie, informatique & technologie > Ingénierie électrique & électronique
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master : ingénieur civil électricien, à finalité spécialisée en Neuromorphic Engineering
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] Robust slip detection remains a major challenge in robotic manipulation, as it is essential for stable and adaptive interaction with objects of varying shapes, textures, and compliance. This thesis proposes a novel approach by designing a biologically inspired algorithm for real-time, asynchronous slip detection using low-cost, three-dimensional magnetic tactile sensors, while explicitly avoiding computationally heavy learning-based approaches.

To achieve this, temporal signal processing constrained to first-order filters and saturation functions was combined with a network of simulated spiking neurons (Ribar et al. 2019), inspired by biological tactile sensing and designed for compatibility with future neuromorphic CMOS hardware. The algorithm was implemented as a ROS2 node to enable integration into robotic systems and was first evaluated in a controlled environment, followed by a more qualitative in scenarios inspired by real-world conditions.

The results show that the proposed system can detect incipient slip with a latency below 30 ms, a performance comparable to human tactile response times and to state-of-the-art learning-based methods, which typically rely on higher-cost tactile sensors such as GelSight Mini (Jawale et al. 2024), or uSkin (Yan et al. 2022), whereas our approach uses low-cost, mass-manufacturable 3D magnetic sensors. Gross slip detection, however, was only achieved in controlled experiments at relatively high slip speeds. Robustness to noise during non-contact phases was improved through the inclusion of a contact-detection neuron. While the approach avoids computationally heavy learning methods, the ROS2 implementation required multi-threading to operate correctly, indicating that its computational requirements are reduced but not yet minimal.

Despite these promising outcomes, several limitations were observed, including reduced sensitivity on smooth surfaces, occasional false positives, and difficulties in generalizing parameter settings across different objects and surface textures. In addition, hardware constraints restricted the simulation speed of neurons, thereby limited their spiking frequencies, which in turn prevented further improvements in delay and sensitivity.

In conclusion, this work establishes a proof-of-concept for biologically inspired slip detection in robotics. It demonstrates the feasibility of detecting slip events using low-cost sensors and a network of simulated spiking neurons with asynchronous, event-driven computation, laying the groundwork for future implementations on low-power neuromorphic hardware.


Fichier(s)

Document(s)

File
Access Master_Thesis_HALA_Pierre.pdf
Description:
Taille: 14.36 MB
Format: Adobe PDF

Annexe(s)

File
Access Abstract_HALA_Pierre.pdf
Description:
Taille: 98.23 kB
Format: Adobe PDF

Auteur

  • Hala, Pierre ULiège Université de Liège > Master ing. civ. électr. fin. spéc. neur. engi.

Promoteur(s)

Membre(s) du jury

  • Drion, Guillaume ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
    ORBi Voir ses publications sur ORBi
  • Sacré, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Robotique intelligente
    ORBi Voir ses publications sur ORBi
  • Le Signor, Théo








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.