Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

Simulation framework for distribution planning under uncertainty using OpenDSS

Télécharger
Leduc, Charline ULiège
Promoteur(s) : Cornélusse, Bertrand ULiège
Date de soutenance : 8-sep-2025/9-sep-2025 • URL permanente : http://hdl.handle.net/2268.2/24778
Détails
Titre : Simulation framework for distribution planning under uncertainty using OpenDSS
Titre traduit : [fr] Simulation pour la planification des réseaux de distribution tenant compte de l'incertitude à l'aide d'OpenDSS
Auteur : Leduc, Charline ULiège
Date de soutenance  : 8-sep-2025/9-sep-2025
Promoteur(s) : Cornélusse, Bertrand ULiège
Membre(s) du jury : Ernst, Damien ULiège
Leyder, Sébastien 
Langue : Anglais
Nombre de pages : 98
Discipline(s) : Ingénierie, informatique & technologie > Energie
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master : ingénieur civil en génie de l'énergie à finalité spécialisée en Energy Networks
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] Distribution System Operators are moving from predictable, one–way delivery to grids with high variability,
driven by distributed energy resources and ongoing electrification of uses. This thesis builds a reproducible
simulation-based methodology to identify how a representative medium-voltage feeder behaves under in-
creasing photovoltaic (PV) penetration and higher electrical vehicle (EV) presence. Simple, deployable
battery energy storage systems (BESS) and demand shaping are solutions that are explored to preserve
voltage quality and reduce technical losses.
First, this thesis frames the shift from deterministic and traditional "worst case" specifications to data-
aware, time-series planning. Then, two archetypal networks are defined, a "within limits" case and an
intentionally overloaded variant. The quasi-static time-series setup in OpenDSS/Python is then described
in detail, as well as the line voltage band of 0.95–1.05 chosen for planning decisions and the Monte-Carlo
PV siting to produce realistic, non-uniform scenarios.
Thereafter, the model is used to first quantify the effects of photovoltaic panels alone. In the within-limits
network, average daily losses reduce along the increase in PV penetration, to reach a drop of ≈ 28% at
70% of PV penetration. All the while daily voltage maxima remain below 1.05 pu. In the overloaded
feeder, losses still lessen remarkably (≈ 30% at 80 % of PV penetration) but several buses still exhibit
daily minima below 0.95 pu across scenarios. The Monte-Carlo scenario spread peaks at intermediate
penetrations (≈40–60%), showing why single-snapshot planning can be misleading.
To further improve the state of the overloaded network, batteries were then integrated to the model.
A fully local algorithm that charges when the local voltage exceeds 1.00 pu and discharge below 0.95 pu
is implemented, while respecting the power limits of the batteries. This implementation allows to reduce
the percentage of time the furthest bus spends in undervoltage from 15% to 2%. Furthermore, it yields
additional loss cuts of around 24%. Using batteries with a lesser charge power shows a trade-off: it allows
for late evening and night support as energy remains but slightly increases average losses due to longer
operation.
The last feature to be added to the model is the effect of EV on the grid. With realistic residential,
workplace and commercial usage, unmanaged evening charging shifts the daily voltage minima downwards
relative to the no-EV case, even at high PV penetration. Two load management solutions were then
presented: the Time Of Use method and the Peak Shaving method.
To conclude, this thesis has demonstrated that, in this realistic network, photovoltaic panels are ab-
solutely beneficial to reduce losses but do not guarantee acceptable voltages on stressed networks. Local
and voltage driven storage control is an effective and rapidly deployable lever to avoid this issue. EV
charging must be managed to avoid minor under-voltage, but network reinforcement might be ultimately
necessary.


Fichier(s)

Document(s)

File
Access Simulation framework for distribution planning under uncertainty using OpenDSS.pdf
Description:
Taille: 3.78 MB
Format: Adobe PDF

Annexe(s)

File
Access Abstract.pdf
Description:
Taille: 146.42 kB
Format: Adobe PDF
File
Access Appendices.pdf
Description:
Taille: 223.93 kB
Format: Adobe PDF

Auteur

  • Leduc, Charline ULiège Université de Liège > Mast. ing. civ. gén. énerg. fin. spéc. Net.

Promoteur(s)

Membre(s) du jury

  • Ernst, Damien ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
    ORBi Voir ses publications sur ORBi
  • Leyder, Sébastien








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.