Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS

Biomedical Text Classification Using LSTM, GRU and Bahdanau Attention

Download
Mvomo Eto, Wilfried ULiège
Promotor(s) : Ittoo, Ashwin ULiège
Date of defense : 8-Sep-2025/9-Sep-2025 • Permalink : http://hdl.handle.net/2268.2/24931
Details
Title : Biomedical Text Classification Using LSTM, GRU and Bahdanau Attention
Translated title : [fr] Classification de textes biomédicaux à l'aide des réseaux neuronaux LSTM, GRU et Bahdanau Attention
Author : Mvomo Eto, Wilfried ULiège
Date of defense  : 8-Sep-2025/9-Sep-2025
Advisor(s) : Ittoo, Ashwin ULiège
Committee's member(s) : Geurts, Pierre ULiège
Huynh-Thu, Vân Anh ULiège
Singh, Akash ULiège
Language : English
Number of pages : 65
Keywords : [en] Biomedical Text Classification
[en] Natural Language Processing
[en] Deep Learning
[en] Few-Shot Learning
[en] SMOTE (Synthetic Minority Over-sampling Technique)
[en] Class Weighting
Discipline(s) : Engineering, computing & technology > Civil engineering
Target public : Researchers
Professionals of domain
Student
General public
Other
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] This research evaluates the performance of deep learning models—Gated Recurrent Unit (GRU)
and Long Short-Term Memory (LSTM), with Bahdanau attention added—for biomedical text classification using two datasets: the Memorial Sloan Kettering Cancer Center (MSKCC ) dataset for binary classification of genetic mutations and the Medical Abstracts dataset for multi-class disease categorization. The experiments showed that GRU models generally offer better training efficiency and balanced accuracy than LSTM models, and that class weighting proved more effective than Synthetic Minority Over-sampling Technique (technique for oversampling minority classes) (SMOTE) in handling class imbalance. While few-shot learning remains challenging, models using Biomedical Natural Language Processing (BioMedNLP) contextual embeddings combined with attention mechanisms demonstrated promising generalization, particularly in low-resource scenarios. These findings support the development of more robust and equitable Natural Language Processing (NLP) systems for biomedical applications.


File(s)

Document(s)

File
Access s226625.pdf
Description:
Size: 19 MB
Format: Adobe PDF

Author

  • Mvomo Eto, Wilfried ULiège Université de Liège > Mast. sc. don. fin. spéc.

Promotor(s)

Committee's member(s)

  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi View his publications on ORBi
  • Huynh-Thu, Vân Anh ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Informatique
    ORBi View his publications on ORBi
  • Singh, Akash ULiège Université de Liège - ULiège >
    ORBi View his publications on ORBi








All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.