Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 156 | DOWNLOAD 511

Development of a bifurcation identification interface applied to the analysis of neuronal excitability

Download
Gillis, Thibault ULiège
Promotor(s) : Drion, Guillaume ULiège
Date of defense : 26-Jun-2017/27-Jun-2017 • Permalink : http://hdl.handle.net/2268.2/2610
Details
Title : Development of a bifurcation identification interface applied to the analysis of neuronal excitability
Translated title : [fr] Développement d'une interface d’identification de bifurcation appliquée à l'analyse de l'excitabilité neuronale
Author : Gillis, Thibault ULiège
Date of defense  : 26-Jun-2017/27-Jun-2017
Advisor(s) : Drion, Guillaume ULiège
Committee's member(s) : Louveaux, Quentin ULiège
Wehenkel, Louis ULiège
Seutin, Vincent ULiège
Language : English
Number of pages : 85
Keywords : [en] Neuroscience
[en] Neuron mathematical modelling
[en] Non-linear systems
[en] Bifurcation analysis
[en] Julia
[en] Scientific computing
Discipline(s) : Engineering, computing & technology > Multidisciplinary, general & others
Target public : Researchers
Professionals of domain
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil électricien, à finalité spécialisée en "electrical engineering"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] This master thesis concerns the implementation of a novel, computationally efficient bifurcation numerical analysis interface in the Julia compiled programming language. The interface involves the use of the well-known bisection or Newton-Raphson methods in order to locate bifurcations in the neuron models, as well as the use of numerical approximation methods of Jacobian matrices through forward numerical differentiation of the system's equations.
The interface that is built aims at the identification of the bifurcations in neuron models in order to determine their excitability type. A recent paper-motivated canonical model is chosen as an example to which the interface can be applied as a proof of concept. This numerical analysis of the example model outputs results that highlight the importance of dynamical analysis of neuron models, i.e. analysis over a range of time-scale parameters, versus the more common static analysis of models through the visual inspection of their phase plane representation.
Normal form identification based on visual inspection only is at considerable risk that the original system is identified to may not be the correct one. The results obtained through the use of this interface on a two-dimensional therefore motivate the need for extensive numerical analysis of original high-dimensional neuron models for various values of time-scale separation in order to reliably identify the bifurcation normal form that they can be reduced to.


File(s)

Document(s)

File
Access TFE - version finale.pdf
Description: -
Size: 2.94 MB
Format: Adobe PDF
File
Access TFE - résumé 1 page.pdf
Description: -
Size: 55.77 kB
Format: Adobe PDF
File
Access TFE - illustrations principales.pdf
Description: -
Size: 255.87 kB
Format: Adobe PDF

Author

  • Gillis, Thibault ULiège Université de Liège > Master ingé. civ. électr., à fin.

Promotor(s)

Committee's member(s)

  • Louveaux, Quentin ULiège Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation : Optimisation discrète
    ORBi View his publications on ORBi
  • Wehenkel, Louis ULiège Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
    ORBi View his publications on ORBi
  • Seutin, Vincent ULiège Université de Liège - ULg > Département des sciences biomédicales et précliniques > Pharmacologie
    ORBi View his publications on ORBi
  • Total number of views 156
  • Total number of downloads 511










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.