Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 109 | DOWNLOAD 14

Multi-Instance Multi-Stage Deep Learning for Medical Image Recognition

Download
Mastrodicasa, Simon ULiège
Promotor(s) : Phillips, Christophe ULiège
Date of defense : 25-Jun-2018/26-Jun-2018 • Permalink : http://hdl.handle.net/2268.2/4673
Details
Title : Multi-Instance Multi-Stage Deep Learning for Medical Image Recognition
Translated title : [fr] Deep Learning Multi-Cas Multi-Etapes pour la Reconnaissance en Imagerie Medicale
Author : Mastrodicasa, Simon ULiège
Date of defense  : 25-Jun-2018/26-Jun-2018
Advisor(s) : Phillips, Christophe ULiège
Committee's member(s) : Zhang, Gary 
Geurts, Pierre ULiège
Louppe, Gilles ULiège
Language : English
Number of pages : 65
Keywords : [en] Machine learning
[en] MRI
[en] Deep Learning
[en] Multi-Instance
Discipline(s) : Engineering, computing & technology > Computer science
Research unit : University College of London
Target public : Researchers
Complementary URL : https: //github.com/Mastrodicasa/Master_Thesis.git
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil biomédical, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Given a 2D transversal slice, identify which body section it belongs to, which is a
classification problem.
The twist is, instead of having a database with segmented body parts (example:
in this image, the heart is placed there, which is the discriminative feature of the
"cardiac" body section), image level label (example:this image belongs to the "car-
diac" body section) are used to train the algorithm, reducing greatly the annotation
time done by a specialist.


File(s)

Document(s)

File
Access Multi_Stage_Medical_Imaging_Recognition_Mastrodicasa_Simon.pdf
Description: -
Size: 1.32 MB
Format: Adobe PDF
File
Access Resume_thesis.pdf
Description: -
Size: 343.62 kB
Format: Adobe PDF

Author

  • Mastrodicasa, Simon ULiège Université de Liège > Master ing. civ. biomed., à fin.

Promotor(s)

Committee's member(s)

  • Zhang, Gary
  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi View his publications on ORBi
  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Total number of views 109
  • Total number of downloads 14










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.