Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

Intelligent highlights generation for soccer game

Télécharger
Moureau, Céline ULiège
Promoteur(s) : Van Droogenbroeck, Marc ULiège
Date de soutenance : 26-jui-2019/27-jui-2019 • URL permanente : http://hdl.handle.net/2268.2/6743
Détails
Titre : Intelligent highlights generation for soccer game
Auteur : Moureau, Céline ULiège
Date de soutenance  : 26-jui-2019/27-jui-2019
Promoteur(s) : Van Droogenbroeck, Marc ULiège
Membre(s) du jury : Geurts, Pierre ULiège
Embrechts, Jean-Jacques ULiège
Barnich, Olivier 
Langue : Anglais
Discipline(s) : Ingénierie, informatique & technologie > Sciences informatiques
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master : ingénieur civil électricien, à finalité spécialisée en "electronic systems and devices"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] Nowadays, with the evolution of technology, people have access to Internet everywhere. Thus, videos of soccer games have to be adapted to this media to improve customers’ ex- perience. Highlights are a particular way to provide short videos people can look at in the bus for example. These videos may be personalized to each user. The purpose is to create emotion to viewers.
To do so, in this work, the methods and principles used by operators who manually generate highlights were studied. Moreover, statistics about the content people want to watch and about manual highlights has been extracted. From that basis, a list of the most interesting events in a soccer game, personalized for a particular user and for a given duration is established. Then, the selection of views is effectuated from the camera streams that are available in live production. Finally, these streams are turned into clips depending on sound and on a tool, called EmotionNet, created in this master thesis. EmotionNet is a convolutional neural network able to detect emotion sequences with more than 82% accuracy. This network is also used for the selection of contextual sequences which help viewers understand the context of the soccer game they are looking at as well as the story of the game.
Finally, the results obtained with this algorithm were assessed. Evaluation is difficult in the context of this work because there is no objective ground truth: manual highlights depend on the feeling of the person who does them. The performances were quantitatively estimated task by task. They are satisfying, especially in the case of EmotionNet. The overall result is to be assessed subjectively by personal appreciation. The highlights generated are quite good, they present features of manual highlights and they are perzonalizable depending on the user.


Fichier(s)

Document(s)

File
Access TFE_MOUREAU_Céline.pdf
Description: -
Taille: 16.98 MB
Format: Adobe PDF
File
Access ABSTRACT_MOUREAU_Céline.pdf
Description: Résumé d'une page demandé par la faculté
Taille: 109.84 kB
Format: Adobe PDF

Auteur

  • Moureau, Céline ULiège Université de Liège > Master ingé. civ. électr., à fin.

Promoteur(s)

Membre(s) du jury

  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi Voir ses publications sur ORBi
  • Embrechts, Jean-Jacques ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Techniques du son et de l'image
    ORBi Voir ses publications sur ORBi
  • Barnich, Olivier EVS, rue Bois Saint Jean 13, 4102 SERAING








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.