Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 64 | DOWNLOAD 0

Master's Thesis : Deep learning for robust soccer pitch localization

Download
Bolle, Chloé ULiège
Promotor(s) : Van Droogenbroeck, Marc ULiège
Date of defense : 25-Jun-2020/26-Jun-2020 • Permalink : http://hdl.handle.net/2268.2/9044
Details
Title : Master's Thesis : Deep learning for robust soccer pitch localization
Author : Bolle, Chloé ULiège
Date of defense  : 25-Jun-2020/26-Jun-2020
Advisor(s) : Van Droogenbroeck, Marc ULiège
Committee's member(s) : Deliège, Adrien ULiège
Barnich, Olivier 
Language : English
Number of pages : 88
Discipline(s) : Engineering, computing & technology > Electrical & electronics engineering
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil électricien, à finalité spécialisée en "signal processing and intelligent robotics"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Sport field localization has many applications such as generation of statistics, autonomous camera systems or automated generation of highlights. Nowadays, not only large federations like FIFA are interested in the calibration of autonomous and manually steered cameras, but also smaller clubs want to have such a system for analyzing matches and making strategies. For all these applications, it is essential to have a robust pitch localization even in poor conditions, for example low lighting and inconspicuous lines.

EVS has developed an autonomous calibration system. This system is based on a neural network technique. However, during a Standard-Anderlecht soccer game filmed in poor conditions, the system repeatedly failed to localize the soccer pitch. The objective of this master thesis is to solve this problem in order to localize the soccer pitch even in such bad conditions.


File(s)

Document(s)

File
Access TFE_Chloé_Bolle.pdf
Description:
Size: 16.36 MB
Format: Adobe PDF
File
Access Resume_Chloé_Bolle.pdf
Description:
Size: 54.26 kB
Format: Adobe PDF

Annexe(s)

File
Access initial_nn_prediction.jpg
Description: Initial prediction of the neural network trained with images of the soccer pitch
Size: 161.21 kB
Format: JPEG
File
Access modified_nn_prediction.jpg
Description: Prediction of the neural network trained with images of the soccer pitch after the modifications proposed in the master thesis
Size: 146.95 kB
Format: JPEG
File
Access final_calibration.jpg
Description: Final calibration obtained using the inferred mask of the modified neural network
Size: 142.96 kB
Format: JPEG

Author

  • Bolle, Chloé ULiège Université de Liège > Master ingé. civ. électr., à fin.

Promotor(s)

Committee's member(s)

  • Deliège, Adrien ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
    ORBi View his publications on ORBi
  • Barnich, Olivier EVS, rue Bois Saint Jean 13, 4102 SERAING
  • Total number of views 64
  • Total number of downloads 0










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.