Neologisms and nonce-word formations in English-language tweets
Filipovich, Katsiaryna
Promoteur(s) : Van linden, An
Date de soutenance : 26-aoû-2020/5-sep-2020 • URL permanente : http://hdl.handle.net/2268.2/10324
Détails
Titre : | Neologisms and nonce-word formations in English-language tweets |
Auteur : | Filipovich, Katsiaryna |
Date de soutenance : | 26-aoû-2020/5-sep-2020 |
Promoteur(s) : | Van linden, An |
Membre(s) du jury : | Möller, Robert
Perrez, Julien |
Langue : | Anglais |
Nombre de pages : | 75 |
Mots-clés : | [en] neologisms, Twitter, word-formation |
Discipline(s) : | Arts & sciences humaines > Langues & linguistique |
Public cible : | Grand public |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master en langues et lettres modernes, orientation générale, à finalité didactique |
Faculté : | Mémoires de la Faculté de Philosophie et Lettres |
Résumé
[en] This thesis investigated neologisms created on Twitter and their ways of formation. Such study is important in finding out the probable factors that influence the understanding of newly-coined words, especially in English language learners. Data encompasses a corpus of 826992 English-language tweets (‘English Tweet Stratified Random Sample’, 2012), and the lexical items collected were analyzed with the help of AntConc tool. The study considered qualitative and quantitative analyses. The findings from this research show that blending, conversion and semantic change are the most prominent word-formation types in Twitter. Mixed formations frequently occur, involving conversion as a key element. Such methods as conversion and semantic change, particularly when combined, affect the meaning of the word, creating a neologism that is difficult to decode. The end of the study suggests classroom activities for students. These exercises should train language learners to guess the meaning from the context and introduce morphological aspects of the language.
Fichier(s)
Document(s)
Description:
Taille: 733.1 kB
Format: Adobe PDF
Annexe(s)
Description:
Taille: 17.64 kB
Format: Microsoft Excel XML
Description: corpus
Taille: 20.96 MB
Format: Microsoft Excel XML
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.