Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 65 | DOWNLOAD 5

Master's Thesis : Ensemble methods applied to electricity demand forecast

Leroux, Camille ULiège
Promotor(s) : Ernst, Damien ULiège
Date of defense : 7-Sep-2020/9-Sep-2020 • Permalink : http://hdl.handle.net/2268.2/10462
Details
Title : Master's Thesis : Ensemble methods applied to electricity demand forecast
Author : Leroux, Camille ULiège
Date of defense  : 7-Sep-2020/9-Sep-2020
Advisor(s) : Ernst, Damien ULiège
Committee's member(s) : Théate, Thibaut ULiège
Manuel de Villena Millan, Miguel ULiège
Mathieu, Sébastien ULiège
Language : English
Number of pages : 39
Keywords : [en] energy
[en] forecast
[en] nomination
[en] day-ahead
[en] machine learning
[en] stacking
[en] predictions
[en] ensemble method
[en] electricity
Discipline(s) : Engineering, computing & technology > Computer science
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences informatiques, à finalité spécialisée en "intelligent systems"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] This work studies performances of an ensemble method approach based on stacking to forecast energy demand in order to get day-ahead nominations for industrial consumer. This ensemble method's study is conducted with four different models as meta learner, with five learning algorithms as base models. Model training and evaluation are done using historical data composed of one full year meter measurements. This study shows that despite being widely used, ensemble methods need refinement to claim better results than a naive algorithm alone on the case study considered in this work. Summing seasonal naive predictions is the most naive setup evaluated in this work and it shows better performances than almost all other tested methods. However, the best one seems to be the combination of WaveNet as base learner as well as meta learner. Overall, this WaveNet aggregator achieves good performances whatever the base learner we chose to use and except in the seasonal naive case it outperforms any base/meta model combination we tested in this work.


File(s)

Document(s)

File
Access Ensemble_methods_applied_to_electricity_demand_forecast.pdf
Description: -
Size: 10.4 MB
Format: Adobe PDF

Annexe(s)

File
Access summary.pdf
Description: -
Size: 209.92 kB
Format: Adobe PDF

Author

  • Leroux, Camille ULiège Université de Liège > Master sc. informatiques, à fin.

Promotor(s)

Committee's member(s)

  • Théate, Thibaut ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
    ORBi View his publications on ORBi
  • Manuel de Villena Millan, Miguel ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
    ORBi View his publications on ORBi
  • Mathieu, Sébastien ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
    ORBi View his publications on ORBi
  • Total number of views 65
  • Total number of downloads 5










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.