Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 214 | DOWNLOAD 631

Master's Thesis : Lightning Gravitational Wave Parameter Inference through Neural Amortization

Télécharger
Delaunoy, Arnaud ULiège
Promoteur(s) : Louppe, Gilles ULiège
Date de soutenance : 7-sep-2020/9-sep-2020 • URL permanente : http://hdl.handle.net/2268.2/10554
Détails
Titre : Master's Thesis : Lightning Gravitational Wave Parameter Inference through Neural Amortization
Auteur : Delaunoy, Arnaud ULiège
Date de soutenance  : 7-sep-2020/9-sep-2020
Promoteur(s) : Louppe, Gilles ULiège
Membre(s) du jury : Geurts, Pierre ULiège
Wehenkel, Louis ULiège
Hermans, Joeri ULiège
Langue : Anglais
Nombre de pages : 63
Mots-clés : [en] Gravitational wave
[en] Deep learning
[en] Machine learning
[en] Simulation-based inference
[en] Fast inference
Discipline(s) : Ingénierie, informatique & technologie > Sciences informatiques
Physique, chimie, mathématiques & sciences de la terre > Physique
Centre(s) de recherche : Montefiore Institute, University of Liège
GRAPPA Institute, University of Amsterdam
Intitulé du projet de recherche : Lightning Gravitational Wave Parameter Inference through Neural Amortization
Public cible : Chercheurs
Professionnels du domaine
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master : ingénieur civil en science des données, à finalité spécialisée
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] Gravitational waves analysis relies on a simulator governed by the nonlinear field equations of general relativity for binary systems. Such analysis is computationally very expensive and necessitates a large-scale exploration of the likelihood surface over the full parameter space.
Neural networks have been gaining popularity as tools for gravitational waves analysis for the last few years. They lead to fast gravitational wave detection and parameter inference and hence complement classical slower techniques. This work explores simulation based inference which relies on likelihood-to-evidence ratio estimation for the parameters of binary black holes mergers. We build a neural network modeling this ratio and use it in place of the simulator allowing to perform parameter inference in few minutes. The performances are assessed on both gravitational wave generated by the simulator and emitted by real black holes.


Fichier(s)

Document(s)

File
Access thesis.pdf
Description:
Taille: 3.85 MB
Format: Adobe PDF

Annexe(s)

File
Access summary.pdf
Description:
Taille: 134.71 kB
Format: Adobe PDF
File
Access mass_mocks.pdf
Description: Examples of inference of the masses performed on simulated gravitational waves. The 50% and 90% credible intervals are derived. The blue dot represents the maximum a posteriori estimator and the orange star the true parameters.
Taille: 192.54 kB
Format: Adobe PDF
File
Access distance_mocks.pdf
Description: Examples of inference of the distance and inclination performed on simulated gravitational waves. The 50% and 90% credible intervals are derived. The blue dot represents the maximum a posteriori estimator and the orange star the true parameters.
Taille: 299.07 kB
Format: Adobe PDF
File
Access chi_eff_mocks.pdf
Description: Examples of inference of the effective spin and mass ratio performed on simulated gravitational waves. The 50% and 90% credible intervals are derived. The blue dot represents the maximum a posteriori estimator and the orange star the true parameters.
Taille: 235.01 kB
Format: Adobe PDF
File
Access sky_mocks.pdf
Description: Examples of inference of the sky position performed on simulated gravitational waves. The 50% and 90% credible intervals are derived. The blue dot represents the maximum a posteriori estimator and the orange star the true parameters.
Taille: 271.62 kB
Format: Adobe PDF
File
Access masses_real_bayes_grid_normalized_contour_marginal_shrinked_GW150914_real_noise_corrected.pdf
Description: Inference on the masses for the GW150914 signal. MCMC stands for Markov Chain Monte-Carlo and LFI for Likelihood-Free Inference.
Taille: 503.92 kB
Format: Adobe PDF
File
Access distance_real_bayes_grid_normalized_contour_marginal_GW150914_real_noise_corrected.pdf
Description: Inference on the distance and the inclination for the GW150914 signal. MCMC stands for Markov Chain Monte-Carlo and LFI for Likelihood-Free Inference.
Taille: 832.77 kB
Format: Adobe PDF
File
Access effective_spin_real_bayes_grid_normalized_contour_marginal_shrinked_GW150914_real_noise_corrected.pdf
Description: Inference on the effective spin and the mass ratio for the GW150914 signal. MCMC stands for Markov Chain Monte-Carlo and LFI for Likelihood-Free Inference.
Taille: 484.74 kB
Format: Adobe PDF
File
Access GW150914_normalized_skymap.pdf
Description: Inference on the sky position for the GW150914 signal. MCMC stands for Markov Chain Monte-Carlo and LFI for Likelihood-Free Inference.
Taille: 64 kB
Format: Adobe PDF

Auteur

  • Delaunoy, Arnaud ULiège Université de Liège > Master ingé. civ. sc. don. à . fin.

Promoteur(s)

Membre(s) du jury

  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi Voir ses publications sur ORBi
  • Wehenkel, Louis ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi Voir ses publications sur ORBi
  • Hermans, Joeri ULiège Université de Liège - ULiège >
    ORBi Voir ses publications sur ORBi
  • Nombre total de vues 214
  • Nombre total de téléchargements 631










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.