Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 198 | DOWNLOAD 124

Master's Thesis : Evaluating outcome following knee arthroplasty using inertial measurement units

Télécharger
Cantamessa, Astrid ULiège
Promoteur(s) : Geris, Liesbet ULiège
Date de soutenance : 7-sep-2020/9-sep-2020 • URL permanente : http://hdl.handle.net/2268.2/10555
Détails
Titre : Master's Thesis : Evaluating outcome following knee arthroplasty using inertial measurement units
Titre traduit : [fr] Évaluation du résultat d'une arthroplastie de genou à l'aide de capteurs inertiels
Auteur : Cantamessa, Astrid ULiège
Date de soutenance  : 7-sep-2020/9-sep-2020
Promoteur(s) : Geris, Liesbet ULiège
Membre(s) du jury : Ruffoni, Davide ULiège
Schwartz, Cédric ULiège
Monk, Paul 
Besier, Thor 
Langue : Anglais
Nombre de pages : 98
Mots-clés : [en] machine learning
[en] inertial measurement units
[en] knee arthroplasty
[en] knee kinematics
[en] patient monitoring
[en] gait analysis
[en] surgical outcome
Discipline(s) : Ingénierie, informatique & technologie > Multidisciplinaire, généralités & autres
Centre(s) de recherche : Auckland Bioengineering Institute
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil biomédical, à finalité spécialisée
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] Osteoarthritis is a frequent and debilitating disease whose burden is set to increase given our ageing population. Arthroplasty is the only curative treatment for end-stage arthritis and can greatly improve joint function, control pain and enhance quality of life. However, surgery is only part of the picture, and ensuring successful outcomes requires both extensive tailored physiotherapy and close patient monitoring for complications. Currently, patient reported outcome measures (PROMs) are used with minimal clinical follow-up. Not only does this allow for limited opportunities to assess postoperative function, but PROMs are also inherently subjective. As such, the orthopaedic clinic lacks of quantitative information with which to actively monitor a patient’s progress. In addition, due to resource limitations, it struggles to closely monitor patients during the first six weeks following surgery, a key period for ensuring adequate long-term joint function. Inertial measurement units (IMUs) provide an opportunity to objectively measure important biomechanical gait variables in both clinic and home settings. This allows clinicians and physiotherapists to remotely monitor patients through cloud-computing technologies.

The aim of this thesis, which is part of a larger research project at the Auckland Bioengineering Institute (Auckland, New Zealand), is to develop and assess a new workflow based on machine learning algorithm to quantitatively evaluate joint function during walking gait of patients following knee arthroplasty using only two ankle-worn IMUs. To evaluate this algorithm, predictions of joint kinematics were compared to ‘ground truth’ joint kinematics recorded from optical motion capture.

Twelve patients undergoing knee arthroplasty were recruited. They participated in two gait sessions before and around six weeks after their surgery during which optical marker trajectories and acceleration and angular velocity from IMUs were recorded. However, in view of the issues encountered with their quantity and quality, two other datasets, previously collected for other studies, were also exploited. One involved ten healthy volunteers performing treadmill walking and the second was composed of four overground walking healthy participants.

Two types of models were generated and evaluated: a personalised model, trained on a portion of a subject’s data and predicting the remaining part, and a generalised model, trained on every individual of the cohort but one used for prediction. Moreover, a sensitivity analysis was performed to select the most optimal combination of parameters and data processing ways. Our method enables to predict knee kinematics with more than 95\% accuracy for personalised models. This also holds for the treadmill generalised model. However, the poor performance of the overground generalised model was due to limited number of steps per person which could not capture the variability within the dataset.

The continuation of this study should increase the patient dataset and include other motions than walking. Moreover, information obtained about the outcome recorded in patients’ environment will be contrasted with other metrics (PROMs, range of motion) collected during their clinical follow-up. Ultimately, this may help clinicians to identify potential complications during recovery and provide the opportunity for early intervention.


Fichier(s)

Document(s)

File
Access Master Thesis _ Cantamessa.pdf
Description:
Taille: 14.62 MB
Format: Adobe PDF
File
Access Erratum_Master Thesis _ Cantamessa.pdf
Description: -
Taille: 14.62 MB
Format: Adobe PDF

Annexe(s)

File
Access Workflow.png
Description:
Taille: 694.86 kB
Format: image/png
File
Access Abstract_Cantamessa.pdf
Description:
Taille: 209.46 kB
Format: Adobe PDF

Auteur

  • Cantamessa, Astrid ULiège Université de Liège > Master ing. civ. biomed., à fin.

Promoteur(s)

Membre(s) du jury

  • Ruffoni, Davide ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
    ORBi Voir ses publications sur ORBi
  • Schwartz, Cédric ULiège Université de Liège - ULiège > Département des sciences de la motricité > Kinésithérapie générale et réadaptation
    ORBi Voir ses publications sur ORBi
  • Monk, Paul Université d'Auckland
  • Besier, Thor
  • Nombre total de vues 198
  • Nombre total de téléchargements 124










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.