Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 60 | DOWNLOAD 8

Master's Thesis : Evaluation and Integration of Deep Learning Architectures for Automatic Defect Recognition

Download
Sprumont, Damien ULiège
Promotor(s) : Geurts, Pierre ULiège
Date of defense : 7-Sep-2020/9-Sep-2020 • Permalink : http://hdl.handle.net/2268.2/10716
Details
Title : Master's Thesis : Evaluation and Integration of Deep Learning Architectures for Automatic Defect Recognition
Translated title : [fr] Évalutation et Intégration d'Architectures "Deep Learning" pour la Reconnaissance Automatique de Défauts
Author : Sprumont, Damien ULiège
Date of defense  : 7-Sep-2020/9-Sep-2020
Advisor(s) : Geurts, Pierre ULiège
Committee's member(s) : Marée, Raphaël ULiège
Louppe, Gilles ULiège
Libertiaux, Vincent 
Language : English
Number of pages : 66
Keywords : [en] GDXRay, ADRIC, Deep Learning, Defect detection
Discipline(s) : Engineering, computing & technology > Computer science
Target public : Researchers
Professionals of domain
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Industrial control has take more and more importance as pieces are often designed to meet
the technical requirements while being the more lighter and cheaper. In the same time, an
operator is responsible for manually inspect and detect defective part from non-defective
ones, which can less and less be achieved in reasonable times for large amount of pieces.
This feeds the demand for innovative and efficient methods to inspect and discriminate
between defective and non-defective parts. With the impulsion of companies like X-RIS,
Euresys and Optrion, the Walloon Region has launched the ADRIC project. This project
aims at developing numeric solutions to face the aforementioned problem. The goals of
this thesis are to investigate deep learning solutions, to implement these solutions and to
evaluate these solutions over x-ray images of industrial pieces. Two datasets are provided
by the ADRIC team and hosted on Cytomine[19]. The GDXray[21] dataset is also used
in the experiments. One evaluates the Mask R-CNN[9] model within the Detectron2[24]
framework. One also builds our own custom models and evaluates those models, to assess
the influence of several parameters on their accuracy. the best model is then integrate
to the Cytomine Research platform. One follows the integration protocol and release an
inference algorithm based on a pre-trained model, previously selected.


File(s)

Document(s)

File
Access dsprumont_Thesis_August2020.pdf
Description: Thesis (core + appendices)
Size: 3.01 MB
Format: Adobe PDF

Author

  • Sprumont, Damien ULiège Université de Liège > Master ingé. civ. info., à fin.

Promotor(s)

Committee's member(s)

  • Marée, Raphaël ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi View his publications on ORBi
  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Libertiaux, Vincent X-Ray Imaging Solutions
  • Total number of views 60
  • Total number of downloads 8










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.