Feedback

HEC-Ecole de gestion de l'Université de Liège
HEC-Ecole de gestion de l'Université de Liège
MASTER THESIS
VIEW 306 | DOWNLOAD 2

Les déterminants du risque de crédit : comparaison entre le modèle logistique à l'aide du lasso et le réseau des neurones au sein d'une microfinance au Burkina Faso

Download
Balima, Hassana ULiège
Promotor(s) : Hambuckers, Julien ULiège
Date of defense : 2-Sep-2020/8-Sep-2020 • Permalink : http://hdl.handle.net/2268.2/10724
Details
Title : Les déterminants du risque de crédit : comparaison entre le modèle logistique à l'aide du lasso et le réseau des neurones au sein d'une microfinance au Burkina Faso
Author : Balima, Hassana ULiège
Date of defense  : 2-Sep-2020/8-Sep-2020
Advisor(s) : Hambuckers, Julien ULiège
Committee's member(s) : Lefevre, Mélanie ULiège
Moreno Miranda, Nicolas ULiège
Language : French
Number of pages : 65
Keywords : [fr] Risque de crédit
[fr] microfinance
[fr] modèle logistique
[fr] lasso
[fr] réseau de neurones artificiels
Discipline(s) : Business & economic sciences > Finance
Target public : Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur de gestion, à finalité spécialisée en Financial Engineering
Faculty: Master thesis of the HEC-Ecole de gestion de l'Université de Liège

Abstract

[fr] Les institutions de microfinance sont des organisations qui fournissent des services financiers aux personnes pauvres ou exclues du système financier. Cependant, elles sont souvent confrontées à de nombreuses difficultés, comme le non-remboursement des prêts par les emprunteurs. Au Burkina Faso, cette situation a conduit à la faillite de plusieurs institutions de microcrédit. L'objectif de cette étude est d'examiner les facteurs qui affectent la défaillance des emprunteurs en utilisant une régression logistique à l’aide du lasso d’une part et du réseau neuronal artificiel d’autre part. L’étude a porté sur un échantillon de 18 240 prêts accordés dont 1 782 n'ont pas été remboursés. Les variables utilisées dans cette étude regroupent le profil sociodémographique des clients, les caractéristiques des prêts et de leurs entreprises. Les résultats ont montré l'importance des du nombre de prêts antérieurs non soldés, de l'âge et de la durée du prêt dans l’explication des défauts de remboursement. Dans l'ensemble, le modèle de réseau neuronal et celui de la régression logistique donnent des résultats similaires.


File(s)

Document(s)

File
Access Hassana BALIMA_Mémoire.pdf
Description:
Size: 1.19 MB
Format: Adobe PDF

Author

  • Balima, Hassana ULiège Université de Liège > Master ingé. gest., à fin.

Promotor(s)

Committee's member(s)

  • Total number of views 306
  • Total number of downloads 2










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.