Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 210 | DOWNLOAD 471

Analysis of physiological responses induced by motion sickness and its detection based on ocular parameters

Pyre, Floriane ULiège
Promotor(s) : Drion, Guillaume ULiège
Date of defense : 24-Jun-2021/25-Jun-2021 • Permalink : http://hdl.handle.net/2268.2/11510
Details
Title : Analysis of physiological responses induced by motion sickness and its detection based on ocular parameters
Translated title : [fr] Analyse des réponses physiologiques induites par le mal des transports et sa détection à partir de paramètres oculaires
Author : Pyre, Floriane ULiège
Date of defense  : 24-Jun-2021/25-Jun-2021
Advisor(s) : Drion, Guillaume ULiège
Committee's member(s) : Sacré, Pierre ULiège
Geurts, Pierre ULiège
François, Clémentine 
Language : English
Number of pages : 124
Keywords : [en] motion sickness
[en] data acquisition
[en] physiological data analysis
[en] autonomous cars
[en] ocular parameters
Discipline(s) : Engineering, computing & technology > Multidisciplinary, general & others
Funders : Phasya
Target public : Researchers
Professionals of domain
Student
General public
Other
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil biomédical, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] One of the promises of autonomous cars is that these will allow drivers to become passengers, and therefore to be engaged in many tasks other than driving such as working, reading or relaxing. However, there exists an increased risk of motion sickness incidence in self-driving cars, thus preventing people suffering from this state from devoting themselves to these tasks. As a consequence, the user acceptance and uptake of autonomous cars could be negatively affected, limiting the benefits this emerging technology may provide. To avoid the negative impact motion sickness could have on autonomous car adoption, this problem has to be investigated and appropriate countermeasures have to be developed.

A first step in the development of a solution consists in detecting early signs of motion sickness, allowing so to initiate the triggering of various processes intended to alleviate the symptoms associated with motion sickness. The aim of this thesis is to identify physiological parameters that are indicative of motion sickness, and to determine the relevance of ocular parameters for predicting this state. Indeed, ocular data could be easily recorded in autonomous cars through integrated high precision cameras.

A protocol to acquire data in context is first designed. This protocol aims at inducing motion sickness in 2 different ways. The first one consists in driving in a fixed-base driving simulator. The second one consists in performing some tasks on paper while being a passenger in a moving car. Twenty subjects took part to the protocol. Severe motion sickness was reported by 3 and 9 participants, during the session in simulator and the session in car respectively. The analysis of the collected data shows that heart rate, electrodermal and gastric activities increase with motion sickness. Machine learning models are then trained with ocular data as inputs, and a 3-level score, reflecting the severity of motion sickness, as ground truth. The results suggest that ocular data alone cannot predict motion sickness, but that it may be appropriate to combine it with other physiological data in order to predict motion sickness.


File(s)

Document(s)

File
Access PYRE_MasterThesisSummary.pdf
Description:
Size: 73.34 kB
Format: Adobe PDF
File
Access PYRE_MasterThesis.pdf
Description:
Size: 8.5 MB
Format: Adobe PDF

Author

  • Pyre, Floriane ULiège Université de Liège > Master ing. civ. biomed., à fin.

Promotor(s)

Committee's member(s)

  • Sacré, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Robotique intelligente
    ORBi View his publications on ORBi
  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi View his publications on ORBi
  • François, Clémentine
  • Total number of views 210
  • Total number of downloads 471










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.