Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

Automatic and on-the-fly Firewalls Configuration

Télécharger
Rossetto, Vincent ULiège
Promoteur(s) : Donnet, Benoît ULiège
Date de soutenance : 24-jui-2021/25-jui-2021 • URL permanente : http://hdl.handle.net/2268.2/11610
Détails
Titre : Automatic and on-the-fly Firewalls Configuration
Auteur : Rossetto, Vincent ULiège
Date de soutenance  : 24-jui-2021/25-jui-2021
Promoteur(s) : Donnet, Benoît ULiège
Membre(s) du jury : Mathy, Laurent ULiège
Leduc, Guy ULiège
Langue : Anglais
Nombre de pages : 114
Discipline(s) : Ingénierie, informatique & technologie > Sciences informatiques
URL complémentaire : https://github.com/vinci-r/TFE
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en sciences informatiques, à finalité spécialisée en "computer systems security"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] Automation has the potential to improve reliability and efficiency wherever it takes root. However, firewalls are still configured manually, which is difficult and error prone. As a firewall is essentially a program that determines whether incoming traffic is legitimate or malicious, firewall configuration, given a representative dataset of recorded traffic, can be treated as a classification problem, i.e. a discrete output supervised machine learning problem. The possibility of using a machine learning framework for automatic firewall configuration was studied. A training dataset, composed both of legitimate traffic and attacks, was generated and statistically described both in terms of packets and flows. With the guidance of the statistical observations, per-packet and per-flow features were defined, and the performance of classification algorithms using those features was evaluated. The benefits of a potential feature pre-processing were evaluated. It was found to be useful and even necessary in some cases. A limitation was found in the use of classification algorithms in the form of their lack of interpretability. Practical use of firewalls requires that they can be reconfigured in the case where they make the wrong decision. Such classification errors cannot be avoided completely even with a dataset containing enough examples. This necessity makes the direct use of opaque classifiers for automatic firewall configuration impossible. In conjunction with performance constraints, the most realistic solution consists in configurating classical rule-based firewalls. Rule extraction techniques from opaque classifiers are discussed. The decision tree algorithm was used both to extract rules directly from data and from models built using other classification algorithms. Both approaches yielded a similar classification performance. Finally, rules were extracted from decision trees and translated into a valid format to configure a firewall based on mmb (Modular MiddleBox) using a subset of the per-packet features.


Fichier(s)

Document(s)

File
Access Master_thesis.pdf
Description:
Taille: 1.01 MB
Format: Adobe PDF
File
Access Summary.pdf
Description:
Taille: 74.91 kB
Format: Adobe PDF

Annexe(s)

File
Access decisionTree.png
Description: Example of a decision tree for packet data
Taille: 14.21 kB
Format: image/png
File
Access binaryDecisionTree.png
Description: Example of a binary decision tree
Taille: 22.88 kB
Format: image/png
File
Access heatmap3.png
Description: Heatmap for the accuracy of the predictions of different classification algorithms
Taille: 107.42 kB
Format: image/png

Auteur

  • Rossetto, Vincent ULiège Université de Liège > Master sc. informatiques, à fin.

Promoteur(s)

Membre(s) du jury

  • Mathy, Laurent ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes informatiques répartis et sécurité
    ORBi Voir ses publications sur ORBi
  • Leduc, Guy ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Réseaux informatiques
    ORBi Voir ses publications sur ORBi








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.