Mapping and modelling riverine sand mining at the sub-continental scale: a case study for India.
Dujardin, Elise
Promoteur(s) : Vanmaercke, Matthias ; Vercruysse, Kim
Date de soutenance : 3-sep-2021/7-sep-2021 • URL permanente : http://hdl.handle.net/2268.2/12578
Détails
Titre : | Mapping and modelling riverine sand mining at the sub-continental scale: a case study for India. |
Titre traduit : | [fr] Cartographie et modélisation de l'extraction du sable des rivières à l'échelle continentale: cas d'étude de l'Inde |
Auteur : | Dujardin, Elise |
Date de soutenance : | 3-sep-2021/7-sep-2021 |
Promoteur(s) : | Vanmaercke, Matthias
Vercruysse, Kim |
Membre(s) du jury : | Schmitz, Serge
Houbrechts, Geoffrey |
Langue : | Anglais |
Nombre de pages : | 99 |
Mots-clés : | [en] Sand mining [en] River [en] India |
Discipline(s) : | Physique, chimie, mathématiques & sciences de la terre > Sciences de la terre & géographie physique |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master en sciences géographiques, orientation global change, à finalité approfondie |
Faculté : | Mémoires de la Faculté des Sciences |
Résumé
[en] Throughout the world, sand is often mined from rivers, especially in the Global South where the demand for sand increases due to urbanization. Although riverine sand mining (RSM) can have positive impacts (i.e. support livelihoods), it also can lead to many negative impacts particularly on the environment. The large volumes of sand extracted may far exceed the natural rate of replenishment of rivers and can result in local sand scarcity. To avoid this problem, efficient policies to sustainably manage RSM need to be in place. However, few data exist on the location of RSM on large (continental to global) scales. In an attempt to fill this data gap, this thesis aims to gain more insight into the occurrences of RSM at subcontinental scale. The specific objectives are to: (1) Develop a systematic mapping procedure of RSM to collect the first large-scale dataset of RSM occurrences, using India as a case-study. (2) Based on this dataset, identify potential controlling factors of RSM through statistical analysis. Factors were included that represent the demand and supply of sand. (3) Develop a statistical model to estimate the probability of RSM occurrences using logistic regression.
Fichier(s)
Document(s)
Description:
Taille: 4 MB
Format: Adobe PDF
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.