Faculté des Sciences appliquées
Faculté des Sciences appliquées

Master thesis : Wind Power Forecasting

Dachet, Victor ULiège
Promotor(s) : Ernst, Damien ULiège
Date of defense : 27-Jun-2022/28-Jun-2022 • Permalink :
Title : Master thesis : Wind Power Forecasting
Translated title : [fr] Prédiction d'énergie éolienne
Author : Dachet, Victor ULiège
Date of defense  : 27-Jun-2022/28-Jun-2022
Advisor(s) : Ernst, Damien ULiège
Committee's member(s) : Drion, Guillaume ULiège
Fonteneau, Raphaël ULiège
Sutera, Antonio ULiège
Language : English
Keywords : [en] Deep Learning
[en] Machine Learning
[en] Energy
[en] Artificial Intelligence
[en] Energy Forecasting
[en] TSO
[en] Day-ahead forecast
[en] Renewable Energy
Discipline(s) : Engineering, computing & technology > Computer science
Target public : Researchers
Professionals of domain
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées


[en] Renewable energies are challenging to forecast due to their intermittence. However, it is crucial for the energy transition to predict accurately what is going to be produced at different temporal resolution (short, mid or long term) to integrate them in the network. In this work, we investigate the short term horizon. We work in the practical setting of the day-ahead forecast for wind farms. The aim of this work is twofold: to help the transmission system operator (TSO) in its task of balancing the network and the market participants of the day-ahead spot market. Both tasks require to know what is going to be produced for the next day. In this work, we will try new Artificial Intelligence (i.e. AI) models for wind energy forecasting. We explore state-of-the-art Machine Learning and Deep Learning models like Random Forest, Extra Trees, Recurrent Neural Network (i.e. RNN) and Transformers. We also investigate new RNN cells (e.g. BRC, nBRC and hybrid). We create original architectures of RNNs and Transformers. To compare the models and assess the results, we use two datasets: the ORES and the Gefcom2014 dataset. The first dataset is built from ORES recording productions of wind farms located in Belgium and weather data produced by the MAR (Modèle Atmosphérique Régional) developed at the University of Liège. The second dataset is often used in the scientific community. Then, we perform a deep analysis of the results given by the best models on both datasets. Additionally, we provide perspectives of improvement and we discuss other interesting techniques to investigate further.



Access MasterThesis.pdf
Size: 2.9 MB
Format: Adobe PDF
Access SummaryMasterThesis.pdf
Size: 129.86 kB
Format: Adobe PDF


  • Dachet, Victor ULiège Université de Liège > Master ingé. civ. sc. don. à . fin.


Committee's member(s)

  • Drion, Guillaume ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
    ORBi View his publications on ORBi
  • Fonteneau, Raphaël ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
    ORBi View his publications on ORBi
  • Sutera, Antonio ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi View his publications on ORBi
  • Total number of views 24
  • Total number of downloads 36

All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.