Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 1136 | DOWNLOAD 22

Computer vision for improving the drone state estimate

Download
Fonder, Michaël ULiège
Promotor(s) : Van Droogenbroeck, Marc ULiège
Date of defense : 27-Jun-2016/28-Jun-2016 • Permalink : http://hdl.handle.net/2268.2/1523
Details
Title : Computer vision for improving the drone state estimate
Author : Fonder, Michaël ULiège
Date of defense  : 27-Jun-2016/28-Jun-2016
Advisor(s) : Van Droogenbroeck, Marc ULiège
Committee's member(s) : Boigelot, Bernard ULiège
Verly, Jacques ULiège
Eschenauer, Laurent 
Language : English
Number of pages : 68
Keywords : [en] computer vision
[en] drone
[en] UAV
[en] visual odometry
[en] MSCKF
[en] Multi State Constraints Kalman Filter
Discipline(s) : Engineering, computing & technology > Electrical & electronics engineering
Commentary : We provide our code at the following URL : https://github.com/michael-fonder/fonder_thesis-2016/
Target public : Researchers
Professionals of domain
Student
Complementary URL : https://github.com/michael-fonder/fonder_thesis-2016/
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil électricien, à finalité approfondie
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] The drone industry is currently experiencing a fast-paced development which leads to the creation of multitude of various products. An emerging trend is the search of increased smartness and autonomy of the machines. A prerequisite for this quest of autonomy is however the need of having a robust and reliable state estimate over time. In this Master Thesis, we explore different possibilities of achieving this in real-time by using an on-board mounted camera in pair with other sensors for the Fleye, a drone developed by Aerobot. More specifically, we focus our attention on the Multi-State Constraints Kalman Filter for which we provide a detailed explanation and an implementation designed for the Fleye. The strength of this filter resides in its relatively good computational efficiency compared to its alternatives and in its ability to deal with some hardware uncertainties such as an approximative knowledge of the relative position of the different sensors. A method developed to generate synthetic data allowing to test the performance of visual-inertial odometry algorithms is presented in this work. Performance tests made on synthetic and experimental data show that the implemented filter is consistent but still requires further improvements in order to compete with current state-of-the-art solutions.


File(s)

Document(s)

File
Access thesis_fonder.pdf
Description: Appendices included in this file
Size: 9.13 MB
Format: Adobe PDF

Annexe(s)

File
Access thesis-summary.pdf
Description:
Size: 126.29 kB
Format: Adobe PDF
File
Access algorithm-overview.pdf
Description: Flowchart of the algorithm implemented for this thesis
Size: 310.21 kB
Format: Adobe PDF

Author

  • Fonder, Michaël ULiège Université de Liège > Master ingé. civ. électr., fin. appr. (ex 2e master)

Promotor(s)

Committee's member(s)

  • Boigelot, Bernard ULiège Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Informatique
    ORBi View his publications on ORBi
  • Verly, Jacques ULiège Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Exploitation des signaux et images
    ORBi View his publications on ORBi
  • Eschenauer, Laurent
  • Total number of views 1136
  • Total number of downloads 22










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.