Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 230 | DOWNLOAD 0

Master thesis : A Causal Approach to Marketing Mix Modelling through Bayesian Networks

Download
Baré, Alexandre ULiège
Promotor(s) : Louppe, Gilles ULiège
Date of defense : 27-Jun-2022/28-Jun-2022 • Permalink : http://hdl.handle.net/2268.2/15694
Details
Title : Master thesis : A Causal Approach to Marketing Mix Modelling through Bayesian Networks
Author : Baré, Alexandre ULiège
Date of defense  : 27-Jun-2022/28-Jun-2022
Advisor(s) : Louppe, Gilles ULiège
Committee's member(s) : Wehenkel, Louis ULiège
Sacré, Pierre ULiège
Mohan, Siddharth 
Language : English
Discipline(s) : Engineering, computing & technology > Computer science
Target public : Researchers
Professionals of domain
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] This thesis deals with the shortcomings of traditional Marketing Mix Models by proposing a new approach based on causality. As in most Machine Learning applications, it is common to rely on black-box models that can be hard to trust and which often translate into a longer adoption time by the industry. We argue that modelling performance is strengthened by combining raw data with business knowledge from domain experts. The alternative methodology that is thus here investigated relies on a proper causal process clearly identifying the cause-to-effect relationships in a Directed Acyclic Graph that describes the journeys from external and marketing factors to sales. For this purpose, we leverage the recent advances in Structure Learning for Causal Discovery and the power of Do-Calculus to build a framework for Marketing Return on Investment projects. Causal discovery allows for a semi-automated construction of Bayesian Networks and Do-Calculus enables interventional causal inference. The ultimate goal is to advise in a transparent way on an optimal mix of marketing channels.


File(s)

Document(s)

File
Access Causal_Marketing_Mix_Modelling.pdf
Description:
Size: 15.62 MB
Format: Adobe PDF

Author

  • Baré, Alexandre ULiège Université de Liège > Master ingé. civ. sc. don. à . fin.

Promotor(s)

Committee's member(s)

  • Wehenkel, Louis ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi View his publications on ORBi
  • Sacré, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Robotique intelligente
    ORBi View his publications on ORBi
  • Mohan, Siddharth
  • Total number of views 230
  • Total number of downloads 0










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.