Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

Master thesis : Performance evaluation and optimization of a GPU-enabled Discontinuous Galerkin code

Télécharger
D'Antonio, Marco ULiège
Promoteur(s) : Geuzaine, Christophe ULiège
Date de soutenance : 5-sep-2022/6-sep-2022 • URL permanente : http://hdl.handle.net/2268.2/15924
Détails
Titre : Master thesis : Performance evaluation and optimization of a GPU-enabled Discontinuous Galerkin code
Auteur : D'Antonio, Marco ULiège
Date de soutenance  : 5-sep-2022/6-sep-2022
Promoteur(s) : Geuzaine, Christophe ULiège
Membre(s) du jury : Cicuttin, Matteo ULiège
Hillewaert, Koen ULiège
Arnst, Maarten ULiège
Langue : Anglais
Discipline(s) : Ingénierie, informatique & technologie > Sciences informatiques
Public cible : Chercheurs
Professionnels du domaine
Etudiants
Institution(s) : Université de Liège, Liège, Belgique
Università degli Studi di Salerno, Fisciano, Italia
Diplôme : Cours supplémentaires destinés aux étudiants d'échange (Erasmus, ...)
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] Modern supercomputers adopt the use of GPUs to enable better performance on many problems, but developing parallel applications that run at high performance requires a thorough understanding of the hardware and software platforms.
Numerical electromagnetics for example, is one of the fields that benefit from modern HPC machines, with various numerical methods that showed improved performance after implementation on GPU.
In particular, Discontinuous Galerkin Time Domain methods are usually implemented on GPUs for their scalability.

Gmsh DG, developed at the Applied and Computational Electromagnetics research group of the University of Liège, is a solver for Maxwell's equations using the Discontinuous Galerkin method, targeting high-performance parallel systems.
This thesis aimed to implement performance optimizations, a thorough performance analysis and support for multiple GPUs systems.

During the work two optimization were implemented, allowing to improve the overall application performance by reducing memory traffic, increasing locality and enabling the use of compiler optimizations.

The performance of the application were evaluated on real-world problems, performing scaling analysis on a multiprocessor system, showing a perfect scaling up to the bandwidth saturation of the NUMA domains of the AMD processors used for testing.
Furthermore, the results show that in order to outperform single GPU execution, about 64 dedicated cores are required.
The evaluation was also carried out for the single computational kernels, highlighting how all of them, both on CPU and GPU, exploit to the maximum the bandwidth available and especially for high orders of approximation some kernels show performance very close to the maximum peak achievable by the hardware.

Finally, the work focused on implementing multi-GPU support for the application and testing its performance on the available platform, our measurement show that the solver can achieve good performance that become optimal as the problem size increases.


Fichier(s)

Document(s)

File
Access thesis.pdf
Description: Thesis
Taille: 3.67 MB
Format: Adobe PDF
File
Access abstract.pdf
Description: Summary
Taille: 58.87 kB
Format: Adobe PDF
File
Access illustration.pdf
Description: Illustration of results
Taille: 243.53 kB
Format: Adobe PDF

Auteur

  • D'Antonio, Marco ULiège Université de Liège > conv. Erasmus en sc. appl.

Promoteur(s)

Membre(s) du jury

  • Cicuttin, Matteo ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
    ORBi Voir ses publications sur ORBi
  • Hillewaert, Koen ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Design of Turbomachines
    ORBi Voir ses publications sur ORBi
  • Arnst, Maarten ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational and stochastic modeling
    ORBi Voir ses publications sur ORBi








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.