Feedback

Faculté des Sciences
Faculté des Sciences
Mémoire
VIEW 86 | DOWNLOAD 96

Analysis of spatial scales in satellite data reconstructed using a neural network

Libert, Aurélien ULiège
Promoteur(s) : Alvera Azcarate, Aida ULiège ; Barth, Alexander ULiège
Date de soutenance : 5-sep-2022/6-sep-2022 • URL permanente : http://hdl.handle.net/2268.2/16167
Détails
Titre : Analysis of spatial scales in satellite data reconstructed using a neural network
Titre traduit : [fr] Analyse des échelles spatiales dans des données satellitaires reconstruites à l’aide d’un réseau neuronal
Auteur : Libert, Aurélien ULiège
Date de soutenance  : 5-sep-2022/6-sep-2022
Promoteur(s) : Alvera Azcarate, Aida ULiège
Barth, Alexander ULiège
Membre(s) du jury : Capet, Arthur ULiège
Beckers, Jean-Marie ULiège
Lepoint, Gilles ULiège
Langue : Français
Discipline(s) : Sciences du vivant > Sciences aquatiques & océanologie
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en océanographie, à finalité approfondie
Faculté : Mémoires de la Faculté des Sciences

Résumé

[en] Sea surface temperature (SST) is a very important variable to assess numerous physical and biological phenomena, most notably the ocean’s impact on the recent climatic changes. It’s also a parameter that can be measured regularly and over the entire surface of the oceans and seas thanks to satellites. The major issue with those measurements are data breaches due to clouds. Numerous softwares can approximate the lacking data with various methods, one of those being the use of a neural network with a U-Net architecture (Siddique et al, 2021) named DINCAE (Data-Interpolating Convolutional Auto-Encoder) (Barth et al., 2020 et 2022).

This report aims to improve the reliability of the reconstructions made by DINCAE at differing scales, most notably small scales, with 5 or 6 neural layers. To achieve this, it will focus on the use of skip-connections between the input and the output of different layers. The reliability assessment will be done in 2 ways. +The first one is to evaluate the RMS error of the reconstructed data compared to the initial data, including purposefully removed data then restored. The second one is to assess the amount of variance kept by the software as reconstruction softwares are known to under-estimate it. This assessment is done annually and seasonally. The study zone chosen for this report is the Alboran sea, the most western part of the Mediterranean sea.

The work’s result shows the most optimal skip-connections to use are dependent on the scales and period studied. No configuration could be found to both minimize the RMS error as well as to maximize the variance, we thus need to find a trade-off between the two. However, a 6 layers configuration with a skip-connection on each of the first 5 layers has been found to minimize the RMS error, while a 6 layers configuration with a skip-connection only on the second layer has been found to keep the most variance in the system over the entire year at most scales, although it’s not the best over each and every one of the season.


Fichier(s)

Document(s)

File
Access s130663Libert2022.pdf
Description:
Taille: 3.85 MB
Format: Adobe PDF

Auteur

  • Libert, Aurélien ULiège Université de Liège > Master en océanogra., à fin.

Promoteur(s)

Membre(s) du jury

  • Capet, Arthur ULiège Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > MAST (Modeling for Aquatic Systems)
    ORBi Voir ses publications sur ORBi
  • Beckers, Jean-Marie ULiège Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
    ORBi Voir ses publications sur ORBi
  • Lepoint, Gilles ULiège Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > LETIS
    ORBi Voir ses publications sur ORBi
  • Nombre total de vues 86
  • Nombre total de téléchargements 96










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.