Master thesis : Deep Reinforcement Learning for Robotic Grasping
Fares, Nicolas
Promoteur(s) : Ernst, Damien ; Sacré, Pierre
Date de soutenance : 5-sep-2022/6-sep-2022 • URL permanente : http://hdl.handle.net/2268.2/16288
Détails
Titre : | Master thesis : Deep Reinforcement Learning for Robotic Grasping |
Titre traduit : | [fr] Apprentissage par renforcement profond pour la préhension robotique |
Auteur : | Fares, Nicolas |
Date de soutenance : | 5-sep-2022/6-sep-2022 |
Promoteur(s) : | Ernst, Damien
Sacré, Pierre |
Membre(s) du jury : | Wehenkel, Louis
Ewbank, Tom |
Langue : | Anglais |
Nombre de pages : | 83 |
Mots-clés : | [en] Reinforcement Learning [en] Robotic Grasping [en] Deep Learning |
Discipline(s) : | Ingénierie, informatique & technologie > Sciences informatiques |
Organisme(s) subsidiant(s) : | Financement Win2Wal |
Centre(s) de recherche : | Montefiore |
Intitulé du projet de recherche : | IntegrIA |
Public cible : | Chercheurs Professionnels du domaine Etudiants |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master : ingénieur civil en science des données, à finalité spécialisée |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] The development and deployment of robotic grasping systems in the industry help to improve the efficiency and productivity of one’s production lines.
Even though interesting for any industrial actor, those robotic systems require a significant upfront investment.
This significant investment is composed of two primary types of costs: hardware and software.
Thanks to recent developments in Deep Reinforcement Learning applied to robotic grasping through vision-based systems, IntegrIA is researching solutions that could reduce the software costs of robotic grasping applications focused on pick-and-place tasks.
Thus, this master’s thesis implements a state-of-the-art reinforcement learning algorithm named QT-Opt and aims to compare it with IntegrIA’s one.
Both online and offline learning versions of QT-Opt are developed, resulting in three training algorithms to compare across three training datasets.
Performances of resulting agents are quantitatively evaluated and qualitatively compared through metrics such as the normalised area under the success rate curve.
In the end, it is observed that this master thesis best agent trained on a dataset composed of 1,800 objects achieves a grasping success rate of 96.67% on previously unseen objects, against 97.32% for IntegrIA’s agent.
Even though it cannot outperform their implementation, it is interesting to observe that the best agent trained for this master’s thesis achieves the 96% success rate from the original paper while being powered with a fraction of its resources.
Fichier(s)
Document(s)
Annexe(s)
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.