Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 74 | DOWNLOAD 156

Master thesis : Extending Joint Entity and Event Coreference Resolution across Documents

Download
Nelissen, Louis ULiège
Promotor(s) : Ittoo, Ashwin ULiège
Date of defense : 5-Sep-2022/6-Sep-2022 • Permalink : http://hdl.handle.net/2268.2/16441
Details
Title : Master thesis : Extending Joint Entity and Event Coreference Resolution across Documents
Author : Nelissen, Louis ULiège
Date of defense  : 5-Sep-2022/6-Sep-2022
Advisor(s) : Ittoo, Ashwin ULiège
Committee's member(s) : Poumay, Judicaël ULiège
Louppe, Gilles ULiège
Language : English
Number of pages : 58
Keywords : [en] machine learning
[en] natural language processing
[en] coreference resolution
[en] document embedding
Discipline(s) : Engineering, computing & technology > Computer science
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Detecting corefering events and entities in texts is an important task in NLP, where it plays a role in many other tasks and applications. In this work, we build on a joint approach of entity and event coreference resolution, pioneered by H. Lee, Recasens, et al. 2012 and matured by Barhom et al. 2019 using a neural architecture. In particular we look at coreference resolution across documents, more complicated and less researched than coreference resolution within documents. Using the Barhom et al. 2019’s model, we propose a series of extensions to improve its results. This is done by increasing the amount of information provided to the model, in particular the joint nature of the modelling and by improving entity and event representation with the use of document embedding. As a secondary problem, we investigate ways to improve the model’s time performance through compressing the mention representations. Our results are compared with other works tackling the problem of cross document coreference resolution on the ECB+ dataset, the standard dataset for cross document entity and event coreference resolution.


File(s)

Document(s)

File
Access Nelissen2022.pdf
Description:
Size: 1.21 MB
Format: Adobe PDF
File
Access Nelissen2022_Abstract.pdf
Description:
Size: 71.87 kB
Format: Adobe PDF

Author

  • Nelissen, Louis ULiège Université de Liège > Master ingé. civ. sc. don. à . fin.

Promotor(s)

Committee's member(s)

  • Poumay, Judicaël ULiège Université de Liège - ULiège > HEC Liège : UER > UER Opérations : Systèmes d'information de gestion
    ORBi View his publications on ORBi
  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Total number of views 74
  • Total number of downloads 156










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.