Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 52 | DOWNLOAD 3

Master thesis and internship[BR]- Master's thesis : Ship detection from SAR imaging and machine learning techniques[BR]- Integration internship : Centre Spatial de Liège

Télécharger
Cappart, Alice ULiège
Promoteur(s) : Habraken, Serge ULiège
Date de soutenance : 27-jan-2023 • URL permanente : http://hdl.handle.net/2268.2/17086
Détails
Titre : Master thesis and internship[BR]- Master's thesis : Ship detection from SAR imaging and machine learning techniques[BR]- Integration internship : Centre Spatial de Liège
Auteur : Cappart, Alice ULiège
Date de soutenance  : 27-jan-2023
Promoteur(s) : Habraken, Serge ULiège
Membre(s) du jury : Kirkove, Murielle ULiège
Glaude, Quentin ULiège
Van Droogenbroeck, Marc ULiège
Langue : Anglais
Mots-clés : [en] Machine Learning
[en] Ship Detection
[en] SAR
Discipline(s) : Physique, chimie, mathématiques & sciences de la terre > Aérospatiale, astronomie & astrophysique
Centre(s) de recherche : Centre Spatial de Liège
Public cible : Chercheurs
Professionnels du domaine
Etudiants
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil en aérospatiale, à finalité spécialisée en "aerospace engineering"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] Human activities at sea have been not only impacting the maritime environment for years
but also human development and society. Marine monitoring is one of the main thematic
areas addressed by the Copernicus European Union’s Earth Obesrvation Programme.
In particular, Sentinel-1 uses synthetic aperture radar (SAR) technology that provides
global coverage and high-resolution images of the ocean surface, allowing monitoring
of the position of ships at sea which may be useful to track illegal activities, such as
fishing or oil spills, or for safety and security. Using machine learning algorithms allows
to automatically analyze SAR images and supplies ship detection with better accuracy
and efficiency. The present paper aims at evaluating the relevance of LS-SSDD-v1.0,
i.e Large-Scale SAR Ship Detection Dataset-v1.0 Large, for training machine learning
algorithms for ship detection from Sentinel-1 SAR images, and more particularly for
small ship detection. To conduct this work effectively, the former dataset is used to train
and evaluate RetinaNet and Faster R-CNN baseline models using common classification
performance metrics. As a bonus, the Hungarian algorithm is implemented to solve the
assignment problem between SAR ship predictions and AIS messages. The final selected
model is applied on a SAR image of the Belgian coast and the detection is compared to the
AIS messages of the region of interest at the same time of the Sentinel-1 acquisition. In
conclusion, the comparison between both ship positions as well as the model performance
results suggest that LS-SSDD-v1.0 is a relevant database for this master’s thesis subject
but may still need to be augmented. A larger number of predicted ships than AIS messages
also implies either illegal ships or a lack of received AIS signals.


Fichier(s)

Document(s)

File
Access Abstract.pdf
Description:
Taille: 71.2 kB
Format: Adobe PDF
File
Access MasterThesis_AliceCAPPART.pdf
Description:
Taille: 55.62 MB
Format: Adobe PDF

Annexe(s)

File
Access 04082022_9_14.jpg
Description:
Taille: 63.85 kB
Format: JPEG
File
Access 04082022_4_18.jpg
Description:
Taille: 99.7 kB
Format: JPEG

Auteur

  • Cappart, Alice ULiège Université de Liège > Master ingé. civ. aérospat., à fin.

Promoteur(s)

Membre(s) du jury

  • Nombre total de vues 52
  • Nombre total de téléchargements 3










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.