Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 170 | DOWNLOAD 120

Towards Bayesian inference of friction parameters in ice sheets

Download
Remi, Arnaud ULiège
Promotor(s) : Arnst, Maarten ULiège
Date of defense : 26-Jun-2023/27-Jun-2023 • Permalink : http://hdl.handle.net/2268.2/17210
Details
Title : Towards Bayesian inference of friction parameters in ice sheets
Author : Remi, Arnaud ULiège
Date of defense  : 26-Jun-2023/27-Jun-2023
Advisor(s) : Arnst, Maarten ULiège
Committee's member(s) : Dewals, Benjamin ULiège
Louppe, Gilles ULiège
Language : English
Keywords : [en] glaciology, friction, inverse problem, stochastic modelling, neural posterior estimation, normalizing flows, Markov chain Monte carlo
Discipline(s) : Engineering, computing & technology > Multidisciplinary, general & others
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil physicien, à finalité approfondie
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] This work is concerned in the inference of space dependent friction parameters in ice sheets from partial and noisy observations of ice velocity. A Bayesian framework is used to quantify the uncertainty on the inverse problem solution. A space dependent field has to be discretized for the inverse problem to be finite dimensional. Here, the friction field is described as a random field, which allows to discretize it using the Karhunen-Loève expansion. Such discretizations lead to a small dimensional inverse problem. The forward model is a finite-element implementation of an ice-sheet reduced order model. As it is computationally expensive, a polynomial chaos surrogate model is constructed. The inverse problem is solved using sampling methods and neural posterior estimation. Neural posterior estimator has been shown to require less calls to the forward model than sampling methods, for equally satisfying results. This suggests that the use of neural posterior estimator could improve the current state-of-the-art of Bayesian inverse problems in glaciology.


File(s)

Document(s)

File
Access report.pdf
Description:
Size: 6.18 MB
Format: Adobe PDF

Author

  • Remi, Arnaud ULiège Université de Liège > Master ingé. civ. phys., à fin.

Promotor(s)

Committee's member(s)

  • Dewals, Benjamin ULiège Université de Liège - ULiège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
    ORBi View his publications on ORBi
  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Total number of views 170
  • Total number of downloads 120










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.