Optimal time-frequency resolution for minute-long gravitational-wave transients
Marmet, Hugo
Promoteur(s) : Fays, Maxime
Date de soutenance : 29-jui-2023/30-jui-2023 • URL permanente : http://hdl.handle.net/2268.2/17441
Détails
Titre : | Optimal time-frequency resolution for minute-long gravitational-wave transients |
Titre traduit : | [fr] Résolution en temps-fréquence optimale pour les ondes gravitationnelles "minute-long" transitoires |
Auteur : | Marmet, Hugo |
Date de soutenance : | 29-jui-2023/30-jui-2023 |
Promoteur(s) : | Fays, Maxime |
Membre(s) du jury : | Cudell, Jean-René
Char, Prasanta Sluse, Dominique Louppe, Gilles |
Langue : | Anglais |
Nombre de pages : | 77 |
Mots-clés : | [en] gravitational waves [en] gravitational waves data processing [en] minute-long gravitational waves transients [en] coherence spectrogram time-frequency resolution |
Discipline(s) : | Physique, chimie, mathématiques & sciences de la terre > Aérospatiale, astronomie & astrophysique |
Public cible : | Etudiants |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master en sciences spatiales, à finalité approfondie |
Faculté : | Mémoires de la Faculté des Sciences |
Résumé
[en] Spectrograms, which are time-frequency maps illustrating the amplitude evolution, are utilized
for Gravitational Waves (GW) detection and analysis. Spectrograms have a particular resolution
in time and in frequency. As the presented work will show later, spectrogram resolution is
important for unmodeled signal recovery. Existing methods mainly rely on trying empirically
to find the best resolution, namely the pixel size in both time and frequency, which could
enhance signal detection and retrieval. The objective of our research is to determine the most
effective time and frequency resolutions for a bank of signal types likely to be encountered, with
the aim of maximizing signal recuperation. It could potentially enhance future GW analyses, offering
valuable insights into the maximization of scientific information derived from minute-long
unmodeled signals. Additionally, GW detection involves processing huge amounts of data,
which is computationally expensive. Future detectors (Einstein, telescope, Laser Interferometer
Space Antenna) will present enhanced sensitivity and alternative designs, allowing for
the detection of new events, hence also requiring more data processing as well. Machine learning
(ML) algorithms are increasingly utilized for challenging tasks, given the data structures’
recognization efficiency displayed by ML methods. ML algorithms being the future of the field,
a performance increase by improving signal recognizability becomes relevant. Determining the
optimal spectrogram resolution, notably, is a solution to the mentioned problem as it directly
impacts algorithms’ signal recovery efficiency.
Fichier(s)
Document(s)
Description:
Taille: 7.82 MB
Format: Adobe PDF
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.