Master thesis : Symbolic representation of polygons in discrete spaces
Bertrand, Alexis
Promoteur(s) : Boigelot, Bernard
Date de soutenance : 26-jui-2023/27-jui-2023 • URL permanente : http://hdl.handle.net/2268.2/17643
Détails
Titre : | Master thesis : Symbolic representation of polygons in discrete spaces |
Titre traduit : | [fr] Représentation symbolique des polygones dans des espaces discrets |
Auteur : | Bertrand, Alexis |
Date de soutenance : | 26-jui-2023/27-jui-2023 |
Promoteur(s) : | Boigelot, Bernard |
Membre(s) du jury : | Fontaine, Pascal
Louveaux, Quentin |
Langue : | Anglais |
Mots-clés : | [en] Verification [en] Computer Science [en] Mesh [en] Polyhedron |
Discipline(s) : | Ingénierie, informatique & technologie > Sciences informatiques |
Public cible : | Chercheurs Professionnels du domaine Etudiants |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master en sciences informatiques, à finalité spécialisée en "computer systems security" |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] This master's thesis describes a new data structure called Discrete Polyhedron Decision Diagram (DPDD), suited for representing symbolically meshed polygons, i.e., the intersection between a discrete mesh and a convex polygon. We develop algorithms for manipulating the data structure such as performing the intersection of a meshed polygon with a set of constraints, or adding points to the structure. Each algorithm is thoroughly explained and presented in pseudo-code. Some examples are also given to illustrate important properties and operations. This master's thesis provides as well a prototype of the data structure in which all the main operations have been implemented.
The data structure is based on the double description method and automata-based representations. DPDD then explicitly stores the face lattice of the polygon while each of its faces also contain meshes. An advantage of this is that we can retrieve the canonical form of any meshed polygon thanks to a rounding process. This leads us to have more efficient operations over the data structure. We are able to easily and efficiently check whether two meshed polygons are equal, as example, and as we have the submesh of each face, we can avoid redundant computations.
Fichier(s)
Document(s)
Description:
Taille: 1.06 MB
Format: Adobe PDF
Annexe(s)
Description:
Taille: 83.65 kB
Format: Adobe PDF
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.