Graph Neural Networks for Physical Models of Collective Cell Migration
Pirenne, Lize
Promoteur(s) : Louppe, Gilles
Date de soutenance : 4-sep-2023/5-sep-2023 • URL permanente : http://hdl.handle.net/2268.2/18186
Détails
Titre : | Graph Neural Networks for Physical Models of Collective Cell Migration |
Auteur : | Pirenne, Lize |
Date de soutenance : | 4-sep-2023/5-sep-2023 |
Promoteur(s) : | Louppe, Gilles |
Membre(s) du jury : | Marée, Raphaël
Huynh-Thu, Vân Anh Stillman, Namid |
Langue : | Anglais |
Nombre de pages : | 81 |
Mots-clés : | [en] GNN [en] graph neural networks [en] cell migration [en] simulator |
Discipline(s) : | Ingénierie, informatique & technologie > Sciences informatiques |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems" |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] In this thesis, a graph neural network generates likely distributions of
the set of points corresponding to the positions of cells after a discrete time
step from a particular initial disposition. The predictions of this probabilistic program will be sampled to be used over and over again to simulate
the trajectories of each cell. From this generated set of trajectories, summary statistics that reflect the expected behavior will be compared against
the same statistics computed on 2D synthetic data generated from a cell
migration simulator and then real, computer annotated, data coming from
roaming neural crest cells in a dish. Finally, the mechanics of the model will
be analyzed in order to collect an understanding of its decision processes,
which will be compared to the known mechanics of the simulator.
It will be shown that it is possible to train a small and scalable model
to produce accurate trajectories for most of the scenarios studied and that,
with only a few real, computer annotated, samples, this model still offered
interesting inference capabilities. The explainability of graph neural networks and attention layers will be leveraged to offer some insight on the
decision processes.
The use of such models can contribute to improving automatic data
annotation and provide alternate angles to study the mechanisms of cell
migration.
Fichier(s)
Document(s)
Description: The thesis along with its bibliography and appendix.
Taille: 13.53 MB
Format: Adobe PDF
Annexe(s)
Description: Architecture of the synthetic model used.
Taille: 103.49 kB
Format: image/png
Description: Best performances on a synthetic data set.
Taille: 153.47 kB
Format: image/png
Description: Evolution of cells : predicted vs synthetic data set ground truth.
Taille: 126.09 kB
Format: image/png
Description: Analysis of attention weights and distance.
Taille: 169.72 kB
Format: image/png
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.