Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 31 | DOWNLOAD 1

Master thesis : Benchmarking intelligent robotic grasping methods

Download
Binot, Maxime ULiège
Promotor(s) : Ernst, Damien ULiège
Date of defense : 4-Sep-2023/5-Sep-2023 • Permalink : http://hdl.handle.net/2268.2/18208
Details
Title : Master thesis : Benchmarking intelligent robotic grasping methods
Translated title : [fr] Évaluation comparative des méthodes de préhension robotique intelligente
Author : Binot, Maxime ULiège
Date of defense  : 4-Sep-2023/5-Sep-2023
Advisor(s) : Ernst, Damien ULiège
Committee's member(s) : Sacré, Pierre ULiège
Wehenkel, Louis ULiège
Language : English
Number of pages : 61
Keywords : [en] Robotic grasping
[en] Reinforcement learning
[en] Deep Learning
[en] Benchmarking
[en] Cluttered environment
Discipline(s) : Engineering, computing & technology > Computer science
Target public : Researchers
Professionals of domain
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences informatiques
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Robotic grasping is increasingly attracting the attention of the industry. Research about intelligent
robotic grasping and computer vision are constantly evolving and improving in order to meet this
demand on real applications. Benchmarking and comparison of these solutions is an essential step
to further improve intelligent robotic grasping methods. This process allows us to benchmark ourselves
against others, and to continuously improve our systems.
This paper discusses the importance of benchmarking in the development of intelligent robotic
grasping methods. By comparing the average accuracy and speed performances of different grasping
solutions in real-life setups, we can gain a deeper understanding of their capabilities, limitations,
and areas for improvement.
The paper presents a comprehensive benchmarking study on two specific methods, AnyGrasp
and IntegrIA, in both mildly cluttered environments and more challenging cluttered. This benchmark
was achieved by focusing on their performance against a reference human subject, in order
to get a clearer picture of progress against the most efficient and stable agent at to this day.
The results of the study provide valuable insights into the strengths and weaknesses of each
method and offer guidance for future research endeavors.


File(s)

Document(s)

File
Access master_thesis_Maxime_Binot.pdf
Description:
Size: 22.44 MB
Format: Adobe PDF
File
Access Erratum_master_thesis_Maxime_Binot.pdf
Description: -
Size: 511.25 kB
Format: Adobe PDF

Author

  • Binot, Maxime ULiège Université de Liège > Master sc. informatiques

Promotor(s)

Committee's member(s)

  • Sacré, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Robotique intelligente
    ORBi View his publications on ORBi
  • Wehenkel, Louis ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi View his publications on ORBi
  • Total number of views 31
  • Total number of downloads 1










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.