Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 48 | DOWNLOAD 3

Machine learning methods to improve insulin sensitivity forecasting in glycemic control

Download
Frambach, Julien ULiège
Promotor(s) : Desaive, Thomas ULiège
Date of defense : 4-Sep-2023/5-Sep-2023 • Permalink : http://hdl.handle.net/2268.2/18224
Details
Title : Machine learning methods to improve insulin sensitivity forecasting in glycemic control
Author : Frambach, Julien ULiège
Date of defense  : 4-Sep-2023/5-Sep-2023
Advisor(s) : Desaive, Thomas ULiège
Committee's member(s) : Uyttendaele, Vincent ULiège
Chase, Geoff 
Louppe, Gilles ULiège
Language : English
Keywords : [en] Machine learning, Glycemic control, insulin sensitivity
Discipline(s) : Engineering, computing & technology > Civil engineering
Target public : Professionals of domain
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil électricien, à finalité spécialisée en "electronic systems and devices"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Stress-induced hyperglycemia is a common complication among critically ill patients in the in-
tensive care unit. This health condition poses significant dangers, as it can increase the risks
of morbidity and mortality. Glycaemic control has been shown beneficial for these patients but
hard to achieve safely and consistently. STAR is a patient-specific, model-based glucose control
protocol framework successfully providing safe and effective blood glucose control within nor-
moglyceic range using insulin and nutrition as treatments. The STAR protocol has undergone
clinical validation, a challenging task due to glycemic variability and the need to prevent hypo-
glycemic episodes.
Currently, the STAR protocol uses a kernel density approach to predict the 5th and 95th
percentiles of the insulin sensitivity within 1-3 hourly intervals. Forecasting insulin sensitivity is
an important criterion of the STAR protocol to give the best treatment for the patient. Specif-
ically, the STAR 3D model leverages the past two values to predict the distributions of insulin
sensitivity and recommend the optimal treatment based on predicted risks. However, there is
an opportunity to enhance the current model by incorporating machine learning techniques.
This thesis explores the application of various machine learning models using quantile regres-
sion to forecast these percentiles. The aim is to improve prediction accuracy and subsequently
enhance patient safety within the intensive care unit environment.
The findings from these machine learning models highlight the challenge of achieving sub-
stantial prediction improvements using only two input features. The solution lies in increasing
the number of features, thereby enhancing prediction performance and potentially reducing the
occurrence of both hypoglycemic and hyperglycemic episodes among patients.


File(s)

Document(s)

File
Access Julien_Frambach_MasterThesis.pdf
Description:
Size: 4.28 MB
Format: Adobe PDF
File
Access Frambach_Julien_master_thesis_good_version.pdf
Description: Correct version
Size: 4.09 MB
Format: Adobe PDF

Annexe(s)

File
Access TFE_abstract.pdf
Description: Abstract
Size: 67.49 kB
Format: Adobe PDF

Author

  • Frambach, Julien ULiège Université de Liège > Master ingé. civ. électr., à fin.

Promotor(s)

Committee's member(s)

  • Uyttendaele, Vincent ULiège Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
    ORBi View his publications on ORBi
  • Chase, Geoff University of Canterbury
  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Total number of views 48
  • Total number of downloads 3










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.