Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 163 | DOWNLOAD 93

Ocean parameterizations in an idealized model using machine learning

Download
Mangeleer, Victor ULiège
Promotor(s) : Louppe, Gilles ULiège
Date of defense : 4-Sep-2023/5-Sep-2023 • Permalink : http://hdl.handle.net/2268.2/18251
Details
Title : Ocean parameterizations in an idealized model using machine learning
Translated title : [fr] Paramétrisations océaniques dans un modèle idéalisé utilisant l'apprentissage automatique
Author : Mangeleer, Victor ULiège
Date of defense  : 4-Sep-2023/5-Sep-2023
Advisor(s) : Louppe, Gilles ULiège
Committee's member(s) : Huynh-Thu, Vân Anh ULiège
Geurts, Pierre ULiège
Language : English
Number of pages : 106
Keywords : [en] Ocean
[en] Deep Learning
[en] Fourier Neural Operator
[en] Subgrid scale processes
Discipline(s) : Engineering, computing & technology > Multidisciplinary, general & others
Complementary URL : https://github.com/VikVador/Ocean-subgrid-parameterizations-in-an-idealized-model-using-machine-learning
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil physicien, à finalité approfondie
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] This research aims to explore novel methods for parameterizing the contributions of subgrid-scale processes, which refer to physical phenomena occurring at scales finer than the simulation resolution. More precisely, this work is built upon the research of Ross et al., 2023, who, after many years of parameterization development, have created a framework to properly conduct the assessment of the quality of a parameterization.

In addition to replicating their findings, this study extends its scope by attempting to enhance their results through a series of experiments involving more complex datasets. Furthermore, and perhaps most significantly, it delves into the use of Fourier Neural Operators for modeling subgrid-scale process contributions. These neural networks were recently introduced by Li et al., 2020, and have already exhibited impressive results in many areas of computational fluid dynamics. Hence, while building upon the foundation laid by Ross et al., 2023, this study also pioneers the use of Fourier Neural Operators in this context, subjecting them to comprehensive evaluation within the established benchmarking framework.

In conclusion, this research not only facilitates a comprehensive grasp of the underlying physics in ocean-climate simulations but also delves into unexplored realms by leveraging state-of-the-art deep learning techniques for modeling subgrid-scale processes contributions. The conclusive results show promise and underscore the notion that the most captivating discoveries frequently emerge at the crossroads of two captivating scientific domains.

*Ross, Andrew et al. (2023). “Benchmarking of machine learning ocean subgrid parameterzations in an idealized model”. In: Journal of Advances in Modeling Earth Systems 15.1, e2022MS003258.

**Li, Zongyi et al. (2020). “Fourier neural operator for parametric partial differential equations”. In: arXiv preprint arXiv:2010.08895.


File(s)

Document(s)

File
Access TFE.pdf
Description:
Size: 53.22 MB
Format: Adobe PDF

Author

  • Mangeleer, Victor ULiège Université de Liège > Master ingé. civ. phys., à fin.

Promotor(s)

Committee's member(s)

  • Huynh-Thu, Vân Anh ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi View his publications on ORBi
  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi View his publications on ORBi
  • Total number of views 163
  • Total number of downloads 93










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.