Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 76 | DOWNLOAD 107

Master Thesis : Sizing of renewable energy production and storage solutions for increasing the energy autonomy of tertiary buildings

Download
Bessemans, Pauline ULiège
Promotor(s) : Cornélusse, Bertrand ULiège ; gerkens, Guillaume
Date of defense : 4-Sep-2023/5-Sep-2023 • Permalink : http://hdl.handle.net/2268.2/18259
Details
Title : Master Thesis : Sizing of renewable energy production and storage solutions for increasing the energy autonomy of tertiary buildings
Translated title : [fr] Dimensionnement de solutions de production et de stockage d'énergies renouvelables pour augmenter l'autonomie énergétique de bâtiments tertiaires
Author : Bessemans, Pauline ULiège
Date of defense  : 4-Sep-2023/5-Sep-2023
Advisor(s) : Cornélusse, Bertrand ULiège
gerkens, Guillaume 
Committee's member(s) : Louveaux, Quentin ULiège
Ernst, Damien ULiège
Language : English
Number of pages : 82
Keywords : [en] Sizing algorithm
[en] Optimization
[en] Renewable energies
[en] Microgrids
[en] Data analysis
Discipline(s) : Engineering, computing & technology > Computer science
Target public : Researchers
Student
General public
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] The access to electricity as renewable as possible is increasingly in demand. Sometimes, the connection to the public is either impossible or not wanted. Therefore, the local network must equip itself with electrical production and storage solutions. This master's thesis aims to develop and implement an algorithm for sizing production and storage solutions for the electricity supply of tertiary buildings while minimizing the use of fossil energy sources. Three versions of a model were formulated: one considering a long-term investment project with variation in the demand over the year, one restricting itself to yearly data, and a final one modeling the annual demand thanks to representative days. Two objective functions have been defined and used in these three models: the maximization of the installation's Net Present Value with a penalization on the use of fuel and the minimization of the CO2 emissions linked to the project. The different combinations of these three models and two objective functions have been applied to five cases with various consumption profiles. The model with a one-year horizon with a minimization of the CO2 emissions performs best. Further developments and improvements as the integration of additional production and storage solutions or the consideration of the electric vehicles' consumption and batteries worth to be explored.


File(s)

Document(s)

File
Access Bessemans_Pauline_Master_thesis.pdf
Description:
Size: 5.12 MB
Format: Adobe PDF
File
Access Bessemans_Pauline_Abstract_thesis.pdf
Description:
Size: 137.3 kB
Format: Adobe PDF

Author

  • Bessemans, Pauline ULiège Université de Liège > Master ingé. civ. sc. don. à . fin.

Promotor(s)

Committee's member(s)

  • Louveaux, Quentin ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation : Optimisation discrète
    ORBi View his publications on ORBi
  • Ernst, Damien ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
    ORBi View his publications on ORBi
  • Total number of views 76
  • Total number of downloads 107










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.