Master thesis and internship[BR]- Master's thesis : Computation of satellite orbits around asteroids using the ManLab software[BR]- Integration Internship : ULiège
Majer, Riccardo
Promoteur(s) : Kerschen, Gaëtan
Date de soutenance : 4-sep-2023/5-sep-2023 • URL permanente : http://hdl.handle.net/2268.2/18326
Détails
Titre : | Master thesis and internship[BR]- Master's thesis : Computation of satellite orbits around asteroids using the ManLab software[BR]- Integration Internship : ULiège |
Titre traduit : | [fr] Calcul des orbites satellitaires autour des astéroïdes à l’aide du logiciel ManLab |
Auteur : | Majer, Riccardo |
Date de soutenance : | 4-sep-2023/5-sep-2023 |
Promoteur(s) : | Kerschen, Gaëtan |
Membre(s) du jury : | Leclère, Nicolas
Bruls, Olivier |
Langue : | Anglais |
Nombre de pages : | 71 |
Mots-clés : | [en] ManLab [en] Harmonic Balance Method [en] Asteroid dynamics [en] Gravitational model [en] Circular restricted three body problem [en] Periodic orbits |
Discipline(s) : | Ingénierie, informatique & technologie > Ingénierie aérospatiale |
Institution(s) : | Université de Liège, Liège, Belgique Politecnico di Milano, Milano, Italy |
Diplôme : | Master en ingénieur civil en aérospatiale, à finalité spécialisée en "aerospace engineering" |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] The computation of periodic orbits in non-Keplerian dynamics is a critical issue for space missions,
mostly for those around irregular asteroids. The purpose of this thesis is to use a novel, frequency
domain, approach to solve the problem. The approach is based on the Harmonic Balance Method, a
well known method for the analysis of nonlinear vibrations, but never used before in astrodynamics.
In this thesis, it was used the Harmonic Balance Method implemented in ManLab, an interactive
path-following and bifurcation analysis software.
The study starts with a theoretical explanation about the circular restricted three body problem and
about the dynamical problem around asteroids. For the latter, the available gravitational model are
displayed in order to correctly select the one of interest. After this first theoretical introduction,
the classical methods used in the field are briefly discussed, and the theory behind the Harmonic
Balance Method and its ManLab implementation is introduced.
After this preliminary introduction the two problems are analyzed. For the circular restricted three
body problem, the analysis focus on the description of the bifurcations of the families of orbits
around the first Lagrangian point. For the problem around an asteroid a fictitious spherical asteroid,
for which some periodic orbits were computed and compared with the ones obtained through
time integration and through the classical Harmonic Balance Method.
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.