Feedback

HEC-Ecole de gestion de l'Université de Liège
HEC-Ecole de gestion de l'Université de Liège
MASTER THESIS
VIEW 170 | DOWNLOAD 8

Travail de fin d'études: "Évaluation du risque de crédit des PME belges: la comparaison entre le modèle de régression logistique et le modèle de réseau de neurones artificiels"

Download
Kabdani, Hind ULiège
Promotor(s) : Ghilain, François ULiège
Date of defense : 23-Aug-2023/6-Sep-2023 • Permalink : http://hdl.handle.net/2268.2/19105
Details
Title : Travail de fin d'études: "Évaluation du risque de crédit des PME belges: la comparaison entre le modèle de régression logistique et le modèle de réseau de neurones artificiels"
Translated title : [fr] CREDIT RISK ASSESSMENT OF BELGIAN SMEs: THE COMPARISON BETWEEN THE LOGISTIC REGRESSION MODEL AND THE ARTIFICIAL NEURAL NETWORK MODEL.
Author : Kabdani, Hind ULiège
Date of defense  : 23-Aug-2023/6-Sep-2023
Advisor(s) : Ghilain, François ULiège
Committee's member(s) : Blanchard, Gildas ULiège
Language : French
Number of pages : 88
Keywords : [fr] Risque de crédit, défaillance, PME, régression logistique, réseau de neurones artificiels.
Discipline(s) : Business & economic sciences > Finance
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master de spécialisation en gestion des risques financiers
Faculty: Master thesis of the HEC-Ecole de gestion de l'Université de Liège

Abstract

[fr] Les PME présentent un risque de crédit spécifique pour les banques du fait qu’elles font appel à l’endettement bancaire comme source principale de financement et qu’elles sont caractérisées par une fragilité liée à leur structure financière et à leur faible capacité à faire face à la conjoncture économique défavorable. De ce fait, il est indispensable de mettre en place des modèles performants de prévision de la défaillance. La présente étude vise à prédire la défaillance des PME belges au moyen des ratios financiers, en utilisant un modèle statistique de régression logistique et en le comparant à un modèle de réseau de neurones artificiels. Sur la base des résultats des travaux empiriques antérieurs portant sur l’évaluation du risque de crédit, cette étude émet l'hypothèse que bien que les deux modèles aient une bonne qualité de prédiction, le modèle de réseau neuronal se révèle plus performant en discriminant avec plus de précision entre les entreprises solvables et défaillantes.


File(s)

Document(s)

File
Access HIND KABDANI TFE .pdf
Description:
Size: 1.49 MB
Format: Adobe PDF

Author

  • Kabdani, Hind ULiège Université de Liège > Master spéc. gest. risques fin.

Promotor(s)

Committee's member(s)

  • Total number of views 170
  • Total number of downloads 8










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.