Feedback

Faculté des Sciences
Faculté des Sciences
MASTER THESIS
VIEW 28 | DOWNLOAD 1

Mémoire, Partim A, COLLÉGIALITÉ

Download
Blavier, Martin ULiège
Promotor(s) : Remacle, Françoise ULiège
Date of defense : 19-Jan-2021 • Permalink : http://hdl.handle.net/2268.2/19330
Details
Title : Mémoire, Partim A, COLLÉGIALITÉ
Translated title : [fr] Etude de Migration de Charge Cohérente Ultrarapide à l'aide de la Décomposition en Valeurs Singulières
Author : Blavier, Martin ULiège
Date of defense  : 19-Jan-2021
Advisor(s) : Remacle, Françoise ULiège
Committee's member(s) : Leyh, Bernard ULiège
Bastin, Thierry ULiège
Verstraete, Matthieu ULiège
Language : English
Number of pages : 70
Keywords : [en] Coherent Ultrafast Charge Migration
[en] Singular Value Decomposition
[en] SVD
[en] Entanglement in LiH
[en] Entanglement in molecules
Discipline(s) : Physical, chemical, mathematical & earth Sciences > Chemistry
Research unit : Chimie Théorique Physique
Target public : Researchers
Professionals of domain
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences chimiques, à finalité approfondie
Faculty: Master thesis of the Faculté des Sciences

Abstract

[en] The field of attosecond chemistry is now at the crossroads. The experimental techniques allowing us to study and describe coherent ultrafast dynamics are becoming increasingly detailed and accessible.
This novel understanding of the fastest processes at play in chemistry comes, however, with difficulties: the experimental data is most of the time difficult to interpret and rarely allows for an unambiguous description of the effect at play. This is why simulations and models are crucial for this discipline: they allow for the interpretation of the results and give a glimpse of the phenomena at play.
This thesis is devoted to using a linear algebra decomposition, the singular value decomposition, to provide an understanding of the complex coupled electronic and nuclear quantum dynamics resulting from an excitation from a short (atto- to femtosecond) optical pulse.
The first use describes the few-rank approximation of the initial density matrix of an ensemble of randomly oriented molecular systems to decrease the computational cost of averaging grid-based simulations, while retaining a good accuracy. This allows us to gain insight into the ultrafast Jahn-Teller rearrangement of the methane cation upon tunnel ionization and to understand the inherent isotope effect. The results obtained are in good agreement with experimental data.
The second use investigates the value of the Schmidt decomposition of the wavefunction in order to characterize entanglement between electronic and nuclear degrees of freedom in the quantum dynamics of a photoexcited molecular system. The Schmidt decomposition is isomorphic to the singular value decomposition and provides a description of the entanglement in a bipartite system. We therefore use this description in the case of the quantum dynamics of the LiH molecule. This allows us to characterize the entanglement produced by an exciting short optical pulse and non-adiabatic couplings. This also proves to be a valuable insight into both the transfer of amplitudes from one electronic state to the other and the coherent motion of the wave packets on the potential energy surfaces.


File(s)

Document(s)

File
Access MemoireEntierMartinBlavier.pdf
Description: -
Size: 2.96 MB
Format: Adobe PDF

Author

  • Blavier, Martin ULiège Université de Liège > Master en sc. chimiques, à fin.

Promotor(s)

Committee's member(s)

  • Leyh, Bernard ULiège Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de dynamique moléculaire
    ORBi View his publications on ORBi
  • Bastin, Thierry ULiège Université de Liège - ULiège > Département de physique > Spectroscopie atomique et Physique des atomes froids
    ORBi View his publications on ORBi
  • Verstraete, Matthieu ULiège Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
    ORBi View his publications on ORBi
  • Total number of views 28
  • Total number of downloads 1










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.