Feedback

HEC-Ecole de gestion de l'Université de Liège
HEC-Ecole de gestion de l'Université de Liège
Mémoire
VIEW 20 | DOWNLOAD 0

Sales forecasting using statistical and machine learning models: the case of HEXPOL

Télécharger
Loewenau, Hendrik ULiège
Promoteur(s) : Dumont, Morgane ULiège
Date de soutenance : 10-jui-2024/22-jui-2024 • URL permanente : http://hdl.handle.net/2268.2/19634
Détails
Titre : Sales forecasting using statistical and machine learning models: the case of HEXPOL
Auteur : Loewenau, Hendrik ULiège
Date de soutenance  : 10-jui-2024/22-jui-2024
Promoteur(s) : Dumont, Morgane ULiège
Membre(s) du jury : Aerts, Stéphanie ULiège
Panckert, Daniel 
Langue : Anglais
Nombre de pages : 65
Mots-clés : [en] B2B
[en] Machine learning
[en] Sales forecasting
[en] statistics
Discipline(s) : Sciences économiques & de gestion > Méthodes quantitatives en économie & gestion
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en sciences de gestion (Horaire décalé)
Faculté : Mémoires de la HEC-Ecole de gestion de l'Université de Liège

Résumé

[en] Sales forecasting occupies an important place in manufacturing companies, especially in the B2B sector. It can help organisations optimise their supply chain management, resource allocation and target setting. There has been some development made in the different models and new techniques are derived from existing ones. However, there are still some important challenges and limitations in providing accurate forecasts.
This thesis aims to answer three main questions about which technique and model would be adequate to be used in sales forecasting and whether external data should be included in the forecasting model and what kind of data. Furthermore, it discusses the different statistical and machine-learning model setups applied in search of the optimal outcome. The answers to these questions determine whether of this proof of concept is satisfactory or not. The conclusion determines if a statistical or machine-learning forecasting model could present an alternative or an extension to conventional judgemental forecasting.
The Prophet model which has been developed by the Facebook engineering team turned out to be the best-performing model, whereas the artificial neural network did not perform well based on the chosen evaluation metrics. To better understand the results and put them into context, they are visualised in the BI software “Tableau”.
Improvements in terms of accuracy and precision could still be made by extending the feature selection and taking more or different external datasets into consideration.


Fichier(s)

Document(s)

File
Access Sales forecasting using statistical and machine learning models - the case of HEXPOL.pdf
Description:
Taille: 2.51 MB
Format: Adobe PDF
File
Access Sales forecasting using statistical and machine learning models - the case of HEXPOL(1).pdf
Description:
Taille: 2.5 MB
Format: Adobe PDF

Auteur

  • Loewenau, Hendrik ULiège Université de Liège > Master sc. gest. (H.D.)

Promoteur(s)

Membre(s) du jury

  • Nombre total de vues 20
  • Nombre total de téléchargements 0










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.