Feedback

Faculté des Sciences
Faculté des Sciences
Mémoire
VIEW 49 | DOWNLOAD 0

Development of spatial proteomics of cancer tissues using pixel-by-pixel laser capture microdissection (LCM) and MALDI mass spectrometry imaging (MALDI-MSI)

Télécharger
Hodeige, Matthieu ULiège
Promoteur(s) : Mazzucchelli, Gabriel ULiège
Date de soutenance : 22-jan-2024 • URL permanente : http://hdl.handle.net/2268.2/20030
Détails
Titre : Development of spatial proteomics of cancer tissues using pixel-by-pixel laser capture microdissection (LCM) and MALDI mass spectrometry imaging (MALDI-MSI)
Auteur : Hodeige, Matthieu ULiège
Date de soutenance  : 22-jan-2024
Promoteur(s) : Mazzucchelli, Gabriel ULiège
Membre(s) du jury : Kune, Christopher ULiège
Quinton, Loïc ULiège
Sounni, Nor Eddine ULiège
Langue : Anglais
Nombre de pages : 125
Discipline(s) : Physique, chimie, mathématiques & sciences de la terre > Chimie
Organisme(s) subsidiant(s) : MSLab
Centre(s) de recherche : MSLab
Public cible : Chercheurs
Professionnels du domaine
Etudiants
Grand public
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en sciences chimiques, à finalité spécialisée
Faculté : Mémoires de la Faculté des Sciences

Résumé

[en] Some diseases are notably challenging to treat due to their cellular heterogeneity. Proteins, as essential functional components of cells, are of significant interest in studying this diversity. A notable example of a disease characterized by this heterogeneity is triple-negative breast cancer, which is the focus of this study. The objective of this project is to explore, both spatially and functionally, tissue heterogeneity through the proteome of cells present in this tissue. This could allow detailed characterization and mapping of the cancer proteomic heterogeneity, subsequently identifying key regulators of biological processes involved in its progression and aggressiveness. Additionally, this exploration could aid in discovering new targets for drug development and identifying predictive signatures of treatment response. To achieve this, we plan to employ spatial proteomics through (1) MALDI mass spectrometry imaging, a method commonly used in the literature, as well as (2) pixel-by-pixel laser microdissection followed by rapid shotgun mass spectrometry proteomics and (3) single-cell proteomics technologies to determine the spatial distribution of proteins and their related biological functions. Utilizing the Matrix-Assisted Laser Desorption/Ionization (MALDI) imaging technique, we enzymatically digested proteins into peptides using trypsin and cleaved glycans with Peptide-N-Glycosidase F (PNGase) on tissue sections. Hierarchical clustering was employed to display the findings. This approach successfully mapped areas correlating with the tissue's histological characteristics, providing primarily spatial information at a molecular level. Subsequently, we developed an advanced method to gain additional functional insights. This novel approach, termed pixel-by-pixel spatial and functional proteomics, enables a comprehensive analysis of tissue heterogeneity. It achieves this with a dual emphasis on high spatial resolution, at a fine scale of 25μm, and a good proteome coverage (around 1000 proteins per pixel). This methodology allows for a detailed and nuanced exploration of the spatial distribution of proteins within tissues, offering insights into their functional aspects with remarkable precision. To optimize this method, it was crucial to precisely define the shape, size, and pixel sampling strategy to enhance resolution while ensuring high performance and efficiency.
By comparing treated and untreated tissue using Perseus and the String Protein platform, we obtained functional information regarding the treatment's effect. Consequently, this second methodology yields more comprehensive data and functional information compared to the MALDI MSI approach. Nevertheless, conducting an unsupervised analysis encompassing all pixels could enable the comparison and integration of the two methods. Although the single- cell proteomic technique is not explored within the scope of this current study, its integration remains a crucial consideration for the broader objectives of the project.


Fichier(s)

Document(s)

File
Access Mémoire Matthieu HODEIGE.pdf
Description:
Taille: 11.85 MB
Format: Adobe PDF
File
Access Erratum_Mémoire Matthieu HODEIGE.pdf
Description: -
Taille: 123.65 kB
Format: Adobe PDF

Auteur

  • Hodeige, Matthieu ULiège Université de Liège > Master en sc. chimiques, fin. spéc.

Promoteur(s)

Membre(s) du jury

  • Kune, Christopher ULiège Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
    ORBi Voir ses publications sur ORBi
  • Quinton, Loïc ULiège Université de Liège - ULiège > Département de chimie (sciences) > Chimie biologique
    ORBi Voir ses publications sur ORBi
  • Sounni, Nor Eddine ULiège Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
    ORBi Voir ses publications sur ORBi
  • Nombre total de vues 49
  • Nombre total de téléchargements 0










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.