Electromigration-driven weak resistance switching in high-temperature superconducting devices
Stoffels, Daniel
Promoteur(s) : Silhanek, Alejandro
Date de soutenance : 24-jui-2024/25-jui-2024 • URL permanente : http://hdl.handle.net/2268.2/20362
Détails
Titre : | Electromigration-driven weak resistance switching in high-temperature superconducting devices |
Titre traduit : | [fr] Faible commutation de résistance induite par électromigration dans les dispositifs supraconducteurs à haute température |
Auteur : | Stoffels, Daniel |
Date de soutenance : | 24-jui-2024/25-jui-2024 |
Promoteur(s) : | Silhanek, Alejandro |
Membre(s) du jury : | Vanderheyden, Benoît
Gilet, Tristan |
Langue : | Anglais |
Nombre de pages : | 83 |
Mots-clés : | [en] electromigration [en] resistive switching [en] YBCO |
Discipline(s) : | Ingénierie, informatique & technologie > Science des matériaux & ingénierie |
Centre(s) de recherche : | Experimental Physics of Nanostructured Materials, Q-MAT, Université de Liège, Belgium |
Public cible : | Chercheurs Professionnels du domaine Etudiants |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master en ingénieur civil physicien, à finalité approfondie |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] Complex oxides are at the heart of modern functional material developments. In particular, the perovskite ABO3 structure is seen in compounds used in oxide solar cells, resistive memories, fuel cell catalysts, superconducting tapes, quantum bits and programmable magnets, making it one of the most studied material families. One important advantage of these systems is that their properties may be controlled in situ to change between various electronic states, usually by means of thermal or electric conditioning. In this work, we investigate the two-terminal resistive switching properties of the perovskite-like oxide YBa2Cu3O7-δ when the system is driven by electric current. We perform all-electrical switching to characterize and control low-amplitude resistance changes, and we implement finite element modeling to explain how these effects can be properly accounted for by oxygen-vacancy counterflow induced by electric bias. The presented research sheds new light on the bulk displacement of oxygen atoms in perovskite materials with potential for sensing and memory technologies.
Fichier(s)
Document(s)
Description:
Taille: 24.27 MB
Format: Adobe PDF
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.