Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 134 | DOWNLOAD 116

Master thesis : Conservative Simulation-Based Inference with Bayesian Deep Learning

Download
de la Brassinne Bonardeaux, Maxence ULiège
Promotor(s) : Louppe, Gilles ULiège
Date of defense : 24-Jun-2024/25-Jun-2024 • Permalink : http://hdl.handle.net/2268.2/20480
Details
Title : Master thesis : Conservative Simulation-Based Inference with Bayesian Deep Learning
Author : de la Brassinne Bonardeaux, Maxence ULiège
Date of defense  : 24-Jun-2024/25-Jun-2024
Advisor(s) : Louppe, Gilles ULiège
Committee's member(s) : Wehenkel, Louis ULiège
Sacré, Pierre ULiège
Language : English
Keywords : [en] Conservative, Bayesian deep learning, Simulation-based inference
Discipline(s) : Engineering, computing & technology > Computer science
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Simulation-Based Inference (SBI) involves estimating parameters θ of a simulator that
are compatible with the observations x without evaluating the likelihood of the data.
Currently, the best solutions for SBI are neural SBI methods, which are trained using
datasets built with simulations. However, simulations can be computationally expensive
in fields like meteorology or cosmology. Consequently, SBI methods can operate in a
data-poor regime in these fields. When only a limited number of simulations are available,
traditional SBI methods tend to be overconfident due to neural methods overfitting the
data. This overfitting leads to computational uncertainty, as many neural networks may
fit the training data equally well but perform differently on the test data.
This thesis introduces a method using Bayesian Deep Learning (BDL) to account for
computational uncertainty in SBI. We design a family of Bayesian Neural Network (BNN)
priors that yield conservative results with as few as 10 samples, setting it apart from all
other SBI methods. We demonstrate that the use of BDL in SBI produces informative
and conservative posterior distribution estimates with only a few hundred simulations
on a cosmological application. This advancement allows for drawing reliable scientific
conclusions using our method, even when the number of available simulations is limited.


File(s)

Document(s)

File
Access MasterThesisMdlBB.pdf
Description:
Size: 9.15 MB
Format: Adobe PDF

Annexe(s)

File
Access resume.pdf
Description:
Size: 912.76 kB
Format: Adobe PDF
File
Access ScientificPaper.pdf
Description:
Size: 3.33 MB
Format: Adobe PDF

Author

  • de la Brassinne Bonardeaux, Maxence ULiège Université de Liège > Mast. ing. civ. sc. don. fin. spéc.

Promotor(s)

Committee's member(s)

  • Wehenkel, Louis ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi View his publications on ORBi
  • Sacré, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Robotique intelligente
    ORBi View his publications on ORBi
  • Total number of views 134
  • Total number of downloads 116










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.