Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 15 | DOWNLOAD 22

Achieving ultra-slow timescales in neuromorphic circuits - Application to neural bursting

Download
Graindorge, Pierre ULiège
Promotor(s) : Franci, Alessio ULiège
Date of defense : 5-Sep-2024/6-Sep-2024 • Permalink : http://hdl.handle.net/2268.2/20956
Details
Title : Achieving ultra-slow timescales in neuromorphic circuits - Application to neural bursting
Author : Graindorge, Pierre ULiège
Date of defense  : 5-Sep-2024/6-Sep-2024
Advisor(s) : Franci, Alessio ULiège
Committee's member(s) : Redouté, Jean-Michel ULiège
Drion, Guillaume ULiège
Language : English
Discipline(s) : Engineering, computing & technology > Electrical & electronics engineering
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil électricien, à finalité spécialisée en Neuromorphic Engineering
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Neuromorphic engineering seeks to replicate the brain's computational power and energy efficiency in hardware. Current neuromorphic designs, however, face challenges in achieving ultra-slow timescales critical for replicating biological neural behaviors such as realistic bursting patterns. This thesis focuses on addressing these limitations through the design and simulation of neuromorphic circuits capable of ultra-slow dynamics while optimizing area efficiency. Using the Cadence Virtuoso software and a general purpose development kit (GPDK), the work reproduces a reference circuit which mimics biological homeostasis, and incorporates this system to an existing neuron circuit, leading to a new modulable neuron design. Key advancements include the combined use of a differential pair integrator (DPI) and an automatic gain control (AGC) loop to achieve ultra-slow temporal filtering and new neuromodulation capabilities while avoiding the need for excessively large capacitors. Simulation results demonstrate significant improvements in achieving the desired dynamics with enhanced area efficiency. This work represents a step towards more practical large-scale neuromorphic hardware capable of mimicking complex neural behaviors.


File(s)

Document(s)

File
Access TFE.pdf
Description:
Size: 2.5 MB
Format: Adobe PDF
File
Access TFE_Abstract.pdf
Description:
Size: 66 kB
Format: Adobe PDF
File
Access Erratum_TFE.pdf
Description: -
Size: 2.52 MB
Format: Adobe PDF

Author

  • Graindorge, Pierre ULiège Université de Liège > Master ing. civ. électr. fin. spéc. neur. engi.

Promotor(s)

Committee's member(s)

  • Redouté, Jean-Michel ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes microélectroniques intégrés
    ORBi View his publications on ORBi
  • Drion, Guillaume ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
    ORBi View his publications on ORBi
  • Total number of views 15
  • Total number of downloads 22










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.