Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 38 | DOWNLOAD 33

Large Language Models: Building General Coding Assistants

Download
Daoud, Samuel ULiège
Promotor(s) : Ernst, Damien ULiège
Date of defense : 5-Sep-2024/6-Sep-2024 • Permalink : http://hdl.handle.net/2268.2/20996
Details
Title : Large Language Models: Building General Coding Assistants
Translated title : [fr] Grands Modèles de Langage: Construire des Assistants Généraux en Programmation
Author : Daoud, Samuel ULiège
Date of defense  : 5-Sep-2024/6-Sep-2024
Advisor(s) : Ernst, Damien ULiège
Committee's member(s) : Drugmand, Philippe 
Louppe, Gilles ULiège
Language : English
Number of pages : 74
Keywords : [en] LLM
Discipline(s) : Engineering, computing & technology > Computer science
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] In the realm of software development, the frequent release of new Application Programming Interface (API) versions presents a significant challenge for engineers and developers. Traditionally, adapting to these changes requires a comprehensive update of the entire application, resulting in considerable time and resource investments.
This situation highlights the need to support developers in managing the numerous tedious tasks they encounter daily.

This thesis addresses these challenges by leveraging Large Language Models (LLMs) for code-related tasks and introduces a framework for deploying advanced general coding assistants that achieve state-of-the-art performance.

The approach involves selecting and deploying a model based on several meaningful criteria, choosing appropriate benchmarks and datasets for fine-tuning, and developing a framework capable of fine-tuning on a single GPU. We also deploy our own benchmark, building upon the dataset released in previous related works.

We address the limitations associated with fine-tuning under constrained computational resources. Our fine-tuned models demonstrate a systematic improvement in performance for the specific downstream tasks they are adapted to. Improving their precision up to 206.25\%.

We also provide critical insights into both the evaluation metrics for LLMs and the limits of current benchmarks.


File(s)

Document(s)

File
Access SamuelDaoudTFE.pdf
Description:
Size: 4.61 MB
Format: Adobe PDF

Author

  • Daoud, Samuel ULiège Université de Liège > Mast. ing. civ. sc. don. fin. spéc.

Promotor(s)

Committee's member(s)

  • Drugmand, Philippe
  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Total number of views 38
  • Total number of downloads 33










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.