Graph neural networks for models of active matter
Pierre, Jérôme
Promoteur(s) : Louppe, Gilles
Date de soutenance : 5-sep-2024/6-sep-2024 • URL permanente : http://hdl.handle.net/2268.2/21020
Détails
Titre : | Graph neural networks for models of active matter |
Titre traduit : | [fr] Réseaux de neurones graphiques interprétables pour les systèmes cellulaires |
Auteur : | Pierre, Jérôme |
Date de soutenance : | 5-sep-2024/6-sep-2024 |
Promoteur(s) : | Louppe, Gilles |
Membre(s) du jury : | Huynh-Thu, Vân Anh
Geurts, Pierre |
Langue : | Anglais |
Nombre de pages : | 71 |
Mots-clés : | [en] Graph neural network [en] Interpretability [en] Symbolic regression [en] Cellular migration |
Discipline(s) : | Ingénierie, informatique & technologie > Ingénierie civile |
Public cible : | Chercheurs Professionnels du domaine Etudiants Grand public Autre |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master : ingénieur civil en science des données, à finalité spécialisée |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] Cell migration is a critical process that plays a fundamental role in a wide range of
biological phenomena, including embryogenesis, wound healing, and immune responses.
Despite its significance, accurately modeling the complex dynamics of cellular migration
remains challenging.
This thesis investigates the use of graph neural networks (GNNs) to simulate the
dynamics of cellular migration systems. In particular, this work explores the efficacy of
several message-passing GNN architectures including a GaT and classical message-passing
GNNs. The performances of these models are evaluated with a focus on their ability to
replicate ground truth statistics.
Beyond simulation, a key objective of this thesis is to enhance the interpretability
of the models by recovering the underlying mathematical expressions of the interactions
governing cellular interactions. To achieve this, L1 sparsity regularization is applied to
the messages of a single-layer GNN. This results in a dimension reduction that enables
the use of genetic programming for symbolic regression.
Recognizing the challenges posed by symbolic regression in the context of highly
complex analytic equations, this thesis introduces a methodology that decomposes the
messages into a weighted sum of basis functions. Applying symbolic regression on the
weights provides a more tractable means to recover the governing equations.
Fichier(s)
Document(s)
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.