Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 29 | DOWNLOAD 26

Local machine learning-based feature importances for gene regulatory network inference

Download
Kerff, Alexandre ULiège
Promotor(s) : Geurts, Pierre ULiège ; Huynh-Thu, Vân Anh ULiège
Date of defense : 5-Sep-2024/6-Sep-2024 • Permalink : http://hdl.handle.net/2268.2/21141
Details
Title : Local machine learning-based feature importances for gene regulatory network inference
Author : Kerff, Alexandre ULiège
Date of defense  : 5-Sep-2024/6-Sep-2024
Advisor(s) : Geurts, Pierre ULiège
Huynh-Thu, Vân Anh ULiège
Committee's member(s) : Sacré, Pierre ULiège
Van Steen, Kristel ULiège
Language : English
Keywords : [en] Gene regulatory networks
[en] Local feature importance
[en] cell-specific network inference
Discipline(s) : Engineering, computing & technology > Computer science
Complementary URL : https://zenodo.org/records/13352287?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjE2YzhlYzdmLTEzZjAtNDQ4Zi05NTRlLTA0NGU5MGEyZWQwNCIsImRhdGEiOnt9LCJyYW5kb20iOiJhYmI0Zjg2ZjAxMzg5ZmZjMGVhNjVmMmI5YWU3NGVkNyJ9.oG7B5lpZcrO-7w5tk9PKbAKOUD0ydnQ7CX558j7LoZhjw_SAYZLAL5B-gctSN-O7kRl6bY6QS8UWyJJB0-qNyw
https://github.com/AlexandreKff/LocalFIGRN/tree/main
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en informatique, à finalité spécialisée en "management"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[fr] Understanding how a cell (or organism) reacts to a change in the environment or disturbance requires an understanding of the intricate processes controlling gene expression and, therefore, protein synthesis. A common representation of these mechanisms is the gene regulatory network, that aims at defining the regulation links between genes as a set of interactions. Inferring those gene regulatory networks from expression data has been a widely studied field at the level of bulk expression data. However, recent breakthroughs in sequencing technologies enables measurements at the resolution of a single cell. Such data allows the development of research towards the analysis of gene regulatory networks for a single specific cell or for a distinct cell type, rather than global interactions. This thesis has the objective to perform these analyses.


File(s)

Document(s)

File
Access TFE_Kerff.pdf
Description:
Size: 1.36 MB
Format: Adobe PDF
File
Access TFE_Kerff_abstract.pdf
Description:
Size: 176.62 kB
Format: Adobe PDF

Author

  • Kerff, Alexandre ULiège Université de Liège > Master ing. civ. inf. fin. spéc. manag.

Promotor(s)

Committee's member(s)

  • Sacré, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Robotique intelligente
    ORBi View his publications on ORBi
  • Van Steen, Kristel ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Bioinformatique
    ORBi View his publications on ORBi
  • Total number of views 29
  • Total number of downloads 26










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.